Skip to main content
Log in

Analytical exploration of a TiO2 nanofluid along a rotating disk with homogeneous-heterogeneous chemical reactions and non-uniform heat source/sink

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Comparative flow features of two different nanofluids containing TiO2 nanoparticles along a rotating disk near a stagnation point are theoretically addressed here. The primary fluids are presumed as ethylene glycol and water. The influences of non-uniform heat absorption/generation with homogeneous and heterogeneous chemical reactions have been integrated to modify the energy and concentration profiles. By virtue of similarity conversions, the leading partial differential system has been standardized into non-linear ODEs and then cracked analytically by NDM and numerically by RK-4 based shooting practice. Impressions of emerging parameters on the flow regime have been reported by tables and graphs coupled with required discussions. One of our results predicts that, with the augmentation of TiO2 nanoparticles concentration, the rate of heat transport for ethylene glycol nanofluid becomes 30-36% higher compared to that of a water nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.V. Kármán, Z. Angew. Math. Mech. 1, 233 (1921)

    Article  Google Scholar 

  2. W.G. Cochran, Proc. Camb. Philos. Soc. 30, 365 (1934)

    Article  ADS  Google Scholar 

  3. D.M. Hannah, Forced flow against a rotating disk, in British Aeronautical Research Council Reports and Memoranda (1952) No. 2772

  4. M.E. Erdogan, Int. J. Non-Linear Mech. 32, 285 (1997)

    Article  ADS  Google Scholar 

  5. S.U.S. Choi, ASME Int. Mech. Eng. Cong. Exp. 66, 99 (1995)

    Google Scholar 

  6. I. Mustafa, T. Javed, A. Majeed, Can. J. Phys. 93, 1365 (2015)

    Article  ADS  Google Scholar 

  7. M.M. Rashidi, S. Abelman, N. Freidooni Mehr, Int. J. Heat Mass Transfer 62, 515 (2013)

    Article  Google Scholar 

  8. MD. Tausif Sk., K. Das, P.K. Kundu, Eur. Phys. J. Plus 131, 314 (2016)

    Article  Google Scholar 

  9. K. Das, T. Chakraborty, P.K. Kundu, J. Mech. Eng. Sci. C 230, 2473 (2016)

    Article  Google Scholar 

  10. I. Mustafa, T. Javed, A. Ghaffari, J. Mol. Liq. 219, 526 (2016)

    Article  Google Scholar 

  11. M. Turkyilmazoglu, Int. J. Therm. Sci. 51, 195 (2012)

    Article  Google Scholar 

  12. S. Xun, J. Zhao, L. Zheng, X. Chen, X. Zhang, Int. J. Heat Mass Transfer 103, 1214 (2016)

    Article  Google Scholar 

  13. T. Hayat, T. Muhammad, S.A. Shehzad, A. Alsaedi, Comput. Methods Appl. Mech. Eng. 315, 467 (2017)

    Article  ADS  Google Scholar 

  14. M. Mustafa, Int. J. Heat Mass Transfer 108, 1910 (2017)

    Article  Google Scholar 

  15. K. Mehmood, M. Sajid, N. Ali, T. Javed, Eng. Sci. Tech. Int. J. 19, 1949 (2016)

    Article  Google Scholar 

  16. B.J. Gireesha, B. Mahanthesh, M.M. Rashidi, Int. J. Indust. Math. 7, 247 (2015)

    Google Scholar 

  17. F. Mabood, S.M. Ibrahim, M.M. Rashidi, M.S. Shadloo, G. Lorenzini, Int. J. Heat Mass Transfer 93, 674 (2016)

    Article  Google Scholar 

  18. C.Y.P.D. Phani Rajanish, B. Nageswara Rao, J. Heat Transf. 139, 014501 (2017)

    Article  Google Scholar 

  19. K. Mehmood, S. Hussain, M. Sagheer, AIP Adv. 6, 065126 (2016)

    Article  ADS  Google Scholar 

  20. N. Sandeep, C. Sulochana, Eng. Sci. Tech. Int. J. 18, 738 (2015)

    Article  Google Scholar 

  21. P.S. Reddy, P. Sreedevi, Ali. J. Chamkha, Powder Tech. 307, 46 (2017)

    Article  Google Scholar 

  22. M.A. Chaudhary, J.H. Merkin, Fluid Dyn. Res. 16, 311 (1995)

    Article  ADS  Google Scholar 

  23. J.H. Merkin, Math. Comput. Mod. 24, 125 (1996)

    Article  MathSciNet  Google Scholar 

  24. P.K. Kameswaran, S. Shaw, P. Sibanda, P.V.S.N. Murthy, Int. J. Heat Mass Transfer 57, 465 (2013)

    Article  Google Scholar 

  25. T. Hayat, M. Farooq, A. Alsaedi, AIP Adv. 5, 027130 (2015)

    Article  ADS  Google Scholar 

  26. R. Nandkeolyar, S.S. Motsa, P. Sibanda, J. Nanotech. Eng. Med. 4, 041002 (2013)

    Google Scholar 

  27. S. Mansur, A. Ishak, I. Pop, J. Appl. Fluid Mech. 9, 1073 (2016)

    Article  Google Scholar 

  28. T. Hayat, M. Imtiaz, A. Alsaedi, J. Magn. & Magn. Mater. 395, 294 (2015)

    Article  ADS  Google Scholar 

  29. T. Hayat, M. Imtiaz, A. Alsaedi, F. Alzahrani, J. Mol. Liq. 216, 845 (2016)

    Article  Google Scholar 

  30. S. Liao, Commun. Nonlinear Sci. Numer. Simul. 15, 2003 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  31. T. Chakraborty, K. Das, P.K. Kundu, J. Mol. Liq. 229, 443 (2017)

    Article  Google Scholar 

  32. J.H. He, Phys. Lett. A 350, 87 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Sheikholeslami, D.D. Ganji, H.R. Ashorynejad, Powder Tech. 239, 259 (2013)

    Article  Google Scholar 

  34. N. Acharya, K. Das, P.K. Kundu, Eur. Phys. J. Plus 131, 303 (2016)

    Article  Google Scholar 

  35. Z.H. Khan, W.A. Khan, NUST J. Eng. Sci. 1, 127 (2008)

    Google Scholar 

  36. H.C. Brinkman, J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  37. J.C. Maxwell Garnett, Philos. Trans. R. Soc. London Ser. A 203, 385 (1904)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalidas Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Chakraborty, T. & Kumar Kundu, P. Analytical exploration of a TiO2 nanofluid along a rotating disk with homogeneous-heterogeneous chemical reactions and non-uniform heat source/sink. Eur. Phys. J. Plus 132, 555 (2017). https://doi.org/10.1140/epjp/i2017-11818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11818-8

Navigation