Analytical exploration of a TiO2 nanofluid along a rotating disk with homogeneous-heterogeneous chemical reactions and non-uniform heat source/sink

  • Kalidas Das
  • Tanmoy Chakraborty
  • Prabir Kumar Kundu
Regular Article
  • 12 Downloads

Abstract.

Comparative flow features of two different nanofluids containing TiO2 nanoparticles along a rotating disk near a stagnation point are theoretically addressed here. The primary fluids are presumed as ethylene glycol and water. The influences of non-uniform heat absorption/generation with homogeneous and heterogeneous chemical reactions have been integrated to modify the energy and concentration profiles. By virtue of similarity conversions, the leading partial differential system has been standardized into non-linear ODEs and then cracked analytically by NDM and numerically by RK-4 based shooting practice. Impressions of emerging parameters on the flow regime have been reported by tables and graphs coupled with required discussions. One of our results predicts that, with the augmentation of TiO2 nanoparticles concentration, the rate of heat transport for ethylene glycol nanofluid becomes 30-36% higher compared to that of a water nanofluid.

References

  1. 1.
    T.V. Kármán, Z. Angew. Math. Mech. 1, 233 (1921)CrossRefGoogle Scholar
  2. 2.
    W.G. Cochran, Proc. Camb. Philos. Soc. 30, 365 (1934)ADSCrossRefGoogle Scholar
  3. 3.
    D.M. Hannah, Forced flow against a rotating disk, in British Aeronautical Research Council Reports and Memoranda (1952) No. 2772Google Scholar
  4. 4.
    M.E. Erdogan, Int. J. Non-Linear Mech. 32, 285 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    S.U.S. Choi, ASME Int. Mech. Eng. Cong. Exp. 66, 99 (1995)Google Scholar
  6. 6.
    I. Mustafa, T. Javed, A. Majeed, Can. J. Phys. 93, 1365 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    M.M. Rashidi, S. Abelman, N. Freidooni Mehr, Int. J. Heat Mass Transfer 62, 515 (2013)CrossRefGoogle Scholar
  8. 8.
    MD. Tausif Sk., K. Das, P.K. Kundu, Eur. Phys. J. Plus 131, 314 (2016)CrossRefGoogle Scholar
  9. 9.
    K. Das, T. Chakraborty, P.K. Kundu, J. Mech. Eng. Sci. C 230, 2473 (2016)CrossRefGoogle Scholar
  10. 10.
    I. Mustafa, T. Javed, A. Ghaffari, J. Mol. Liq. 219, 526 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Turkyilmazoglu, Int. J. Therm. Sci. 51, 195 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Xun, J. Zhao, L. Zheng, X. Chen, X. Zhang, Int. J. Heat Mass Transfer 103, 1214 (2016)CrossRefGoogle Scholar
  13. 13.
    T. Hayat, T. Muhammad, S.A. Shehzad, A. Alsaedi, Comput. Methods Appl. Mech. Eng. 315, 467 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    M. Mustafa, Int. J. Heat Mass Transfer 108, 1910 (2017)CrossRefGoogle Scholar
  15. 15.
    K. Mehmood, M. Sajid, N. Ali, T. Javed, Eng. Sci. Tech. Int. J. 19, 1949 (2016)CrossRefGoogle Scholar
  16. 16.
    B.J. Gireesha, B. Mahanthesh, M.M. Rashidi, Int. J. Indust. Math. 7, 247 (2015)Google Scholar
  17. 17.
    F. Mabood, S.M. Ibrahim, M.M. Rashidi, M.S. Shadloo, G. Lorenzini, Int. J. Heat Mass Transfer 93, 674 (2016)CrossRefGoogle Scholar
  18. 18.
    C.Y.P.D. Phani Rajanish, B. Nageswara Rao, J. Heat Transf. 139, 014501 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Mehmood, S. Hussain, M. Sagheer, AIP Adv. 6, 065126 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    N. Sandeep, C. Sulochana, Eng. Sci. Tech. Int. J. 18, 738 (2015)CrossRefGoogle Scholar
  21. 21.
    P.S. Reddy, P. Sreedevi, Ali. J. Chamkha, Powder Tech. 307, 46 (2017)CrossRefGoogle Scholar
  22. 22.
    M.A. Chaudhary, J.H. Merkin, Fluid Dyn. Res. 16, 311 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    J.H. Merkin, Math. Comput. Mod. 24, 125 (1996)MathSciNetCrossRefGoogle Scholar
  24. 24.
    P.K. Kameswaran, S. Shaw, P. Sibanda, P.V.S.N. Murthy, Int. J. Heat Mass Transfer 57, 465 (2013)CrossRefGoogle Scholar
  25. 25.
    T. Hayat, M. Farooq, A. Alsaedi, AIP Adv. 5, 027130 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    R. Nandkeolyar, S.S. Motsa, P. Sibanda, J. Nanotech. Eng. Med. 4, 041002 (2013)Google Scholar
  27. 27.
    S. Mansur, A. Ishak, I. Pop, J. Appl. Fluid Mech. 9, 1073 (2016)CrossRefGoogle Scholar
  28. 28.
    T. Hayat, M. Imtiaz, A. Alsaedi, J. Magn. & Magn. Mater. 395, 294 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    T. Hayat, M. Imtiaz, A. Alsaedi, F. Alzahrani, J. Mol. Liq. 216, 845 (2016)CrossRefGoogle Scholar
  30. 30.
    S. Liao, Commun. Nonlinear Sci. Numer. Simul. 15, 2003 (2010)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    T. Chakraborty, K. Das, P.K. Kundu, J. Mol. Liq. 229, 443 (2017)CrossRefGoogle Scholar
  32. 32.
    J.H. He, Phys. Lett. A 350, 87 (2006)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    M. Sheikholeslami, D.D. Ganji, H.R. Ashorynejad, Powder Tech. 239, 259 (2013)CrossRefGoogle Scholar
  34. 34.
    N. Acharya, K. Das, P.K. Kundu, Eur. Phys. J. Plus 131, 303 (2016)CrossRefGoogle Scholar
  35. 35.
    Z.H. Khan, W.A. Khan, NUST J. Eng. Sci. 1, 127 (2008)Google Scholar
  36. 36.
    H.C. Brinkman, J. Chem. Phys. 20, 571 (1952)ADSCrossRefGoogle Scholar
  37. 37.
    J.C. Maxwell Garnett, Philos. Trans. R. Soc. London Ser. A 203, 385 (1904)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Kalidas Das
    • 1
  • Tanmoy Chakraborty
    • 2
  • Prabir Kumar Kundu
    • 3
  1. 1.Department of MathematicsA.B.N. Seal CollegeCooch BeharIndia
  2. 2.Department of Engineering ScienceAcademy of TechnologyHooghlyIndia
  3. 3.Department of MathematicsJadavpur UniversityKolkataIndia

Personalised recommendations