Advertisement

Physical effect of a variable magnetic field on the heat transfer of a nanofluid-based concentrating parabolic solar collector

  • M. Tahari
  • A. Ghorbanian
  • M. Hatami
  • D. Jing
Regular Article

Abstract.

In this paper, the physical effect of a variable magnetic field on a nanofluid-based concentrating parabolic solar collector (NCPSC) is demonstrated. A section of reservoir is modeled as a semi-circular cavity under the solar radiation with the magnetic source located in the center or out of the cavity and the governing equations were solved by the FlexPDE numerical software. The effect of four physical parameters, i.e., Hartmann Number (Ha), nanoparticles volume fraction (\( \varphi\), magnetic field strength (\( \gamma\) and magnetic source location (b, on the Nusselt number is discussed. To find the interaction of these parameters and its effect on the heat transfer, a central composite design (CCD) is used and analysis is performed on the 25 experiments proposed by CCD. Analysis of variance (ANOVA) of the results reveals that increasing the Hartmann number decreases the Nusselt number due to the Lorentz force resulting from the presence of stronger magnetic field.

References

  1. 1.
    K.S. Reddy, Nikhilesh R. Kamnapure, Shreekant Srivastava, Int. J. Low-Carbon Technol. 12, 1 (2017)Google Scholar
  2. 2.
    Ali J. Chamkha, Igor V. Miroshnichenko, Mikhail A. Sheremet, J. Therm. Sci. Eng. Appl. 9, 041004 (2017)CrossRefGoogle Scholar
  3. 3.
    V. Khullar, H. Tyagi, Int. J. Environ. Stud. 69, 220 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Kasaeian et al., Energy Convers. Manag. 89, 368 (2015)CrossRefGoogle Scholar
  5. 5.
    T. Sokhansefat, A.B. Kasaeian, F. Kowsary, Renew. Sustain. Energy Rev. 33, 636 (2014)CrossRefGoogle Scholar
  6. 6.
    Tahereh B. Gorji, A.A. Ranjbar, Sol. Energy 122, 314 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Rehena Nasrin, M.A. Alim, Int. J. Eng. Sci. Technol. 5, 58 (2013)Google Scholar
  8. 8.
    M. Hatami, D. Jing, Appl. Therm. Eng. 121, 1040 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Hatami, D. Jing, J. Mol. Liq. 229, 203 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Hatami, S. Mosayebidorcheh, D. Jing, J. Mol. Liq. 231, 632 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Shahsavara, M. Saghafian, M.R. Salimpour, M.B. Shafii, Exp. Therm. Fluid Sci. 76, 1 (2016)CrossRefGoogle Scholar
  12. 12.
    Mohammad Goharkhah, Armia Salarian, Mehdi Ashjaee, Mahmoud Shahabadi, Powder Technol. 274, 258 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Yarahmadi, H. Moazami Goudarzi, M.B. Shafii, Exp. Therm. Fluid Sci. 68, 601 (2015)CrossRefGoogle Scholar
  14. 14.
    Lersak Nakharintr, Paisarn Naphon, Int. J. Heat Mass Transfer 110, 753 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Hatami, H. Safari, Int. J. Heat Mass Transfer 103, 1053 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Hatami, D. Song, D. Jing, Int. J. Heat Mass Transfer 98, 758 (2016)CrossRefGoogle Scholar
  17. 17.
    G.H.R. Kefayati, Powder Technol. 299, 127 (2016)CrossRefGoogle Scholar
  18. 18.
    G.H.R. Kefayati, Int. J. Heat Mass Transfer 108, 1481 (2017)CrossRefGoogle Scholar
  19. 19.
    G.H.R. Kefayati, Int. J. Heat Mass Transfer 94, 582 (2016)CrossRefGoogle Scholar
  20. 20.
    G.H.R. Kefayati, Int. J. Heat Mass Transfer 94, 539 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Zhou, M. Hatami, D. Song, D. Jing, Int. J. Heat Mass Transfer 103, 715 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Rahimi-Gorji, O. Pourmehran, M. Hatami, D.D. Ganji, Eur. Phys. J. Plus 130, 22 (2015)CrossRefGoogle Scholar
  23. 23.
    M. Hatami, D.D. Ganji, Powder Technol. 258, 94 (2014)CrossRefGoogle Scholar
  24. 24.
    Tazraei, Pedram, Alireza Riasi, J. Fluids Eng. 138, 011203 (2016)CrossRefGoogle Scholar
  25. 25.
    M. Hatami, D.D. Ganji, Particuology 16, 206 (2014)CrossRefGoogle Scholar
  26. 26.
    A.S. Dogonchi, M. Hatami, G. Domairry, Powder Technol. 274, 186 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Hatami, G. Domairry, Powder Technol. 253, 481 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Sheikholeslami, K. Vajravelu, Appl. Math. Comput. 298, 272 (2017)MathSciNetGoogle Scholar
  29. 29.
    A.M. Rashad, M.M. Rashidi, G. Lorenzini, S.E. Ahmed, A.M. Aly, Int. J. Heat Mass Transfer 104, 878 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Esfarayen University of Technology (EUT)North KhorasanIran
  2. 2.International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations