Skip to main content
Log in

Special coupled quantum Otto and Carnot cycles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Two special coupled spins, one is an arbitrary spin-s and the other is a fixed spin-1/2, are proposed as the working substance of the quantum Otto and Carnot cycles. The quantum adiabatic stages of the cycles are considered the simultaneous changes of the frequencies of the spins and the interaction strength in which all the energy gaps of the working substance are changed by the same ratios in the two quantum adiabatic stages. The role of quantum interactions and the spin-s on the performance of the quantum cycles is investigated in detail. It is found that the thermal efficiencies of the cycles are independent of the spin-s and the interaction strength and are also equivalent to their classical counterparts. The work output of the cycles is found to be significantly enhanced by the quantum interactions. Compared to the uncoupled case, the coupled working substance with a smaller spin-s is found to produce more useful work in the weak coupling regime, while the harvested work with a smaller spin-s is less in the strong coupling regime. The concept of local thermodynamics and the role of inner friction are also addressed for the proposed quantum Otto and Carnot cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.E.D. Scovil, E.O. Schulz-Dubois, Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  2. H.T. Quan, Y.-X. Liu, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. H.T. Quan, Phys. Rev. E 79, 041129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. T.D. Kieu, Eur. Phys. J. D 39, 115 (2006)

    Article  ADS  Google Scholar 

  6. B. Gardas, S. Deffner, Phys. Rev. E 92, 042126 (2015)

    Article  ADS  Google Scholar 

  7. R. Dillenschneider, E. Lutz, EPL 88, 50003 (2009)

    Article  ADS  Google Scholar 

  8. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  9. A.Ü.C. Hardal, Ö.E. Müstecaplioğlu, Sci. Rep. 5, 12953 (2015)

    Article  ADS  Google Scholar 

  10. X.L. Huang, X.Y. Niu, X.M. Xiu, X.X. Yi, Eur. Phys. J. D 68, 32 (2014)

    Article  ADS  Google Scholar 

  11. H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  12. B.H. Lin, J.C. Chen, Phys. Rev. E 67, 046105 (2003)

    Article  ADS  Google Scholar 

  13. F. Altintas, A.Ü.C. Hardal, Ö.E. Müstecaplioğlu, Phys. Rev. E 90, 032102 (2014)

    Article  ADS  Google Scholar 

  14. G. Thomas, R.S. Johal, Phys. Rev. E 83, 031135 (2011)

    Article  ADS  Google Scholar 

  15. G.-F. Zhang, Eur. Phys. J. D 49, 123 (2008)

    Article  ADS  Google Scholar 

  16. X.L. Huang, L.C. Wang, X.X. Yi, Phys. Rev. E 87, 012144 (2013)

    Article  ADS  Google Scholar 

  17. Y. Rezek, Entropy 12, 1885 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. T. Feldmann, R. Kosloff, Phys. Rev. E 70, 046110 (2004)

    Article  ADS  Google Scholar 

  19. T. Feldmann, R. Kosloff, Phys. Rev. E 68, 016101 (2003)

    Article  ADS  Google Scholar 

  20. Y. Rezek, P. Salaman, K.H. Hoffmann, R. Kosloff, EPL 85, 30008 (2009)

    Article  ADS  Google Scholar 

  21. X.L. Huang, H. Xu, X.Y. Niu, Y.D. Fu, Phys. Scr. 88, 065008 (2013)

    Article  ADS  Google Scholar 

  22. M.J. Henrich, G. Mahler, M. Michel, Phys. Rev. E 75, 051118 (2007)

    Article  ADS  Google Scholar 

  23. T. Zhang, W.-T. Liu, P.-X. Chen, C.-Z. Li, Phys. Rev. A 75, 062102 (2007)

    Article  ADS  Google Scholar 

  24. G. Thomas, R.S. Johal, Eur. Phys. J. B 87, 166 (2014)

    Article  ADS  Google Scholar 

  25. X.L. Huang, T. Wang, X.X. Yi, Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

  26. A. del Campo, J. Good, M. Paternostro, Sci. Rep. 4, 6208 (2014)

    Article  Google Scholar 

  27. F. Wu, L. Chen, F. Sun, C. Wu, Q. Li, Phys. Rev. E 73, 016103 (2006)

    Article  ADS  Google Scholar 

  28. E.A. Ivanchenko, Phys. Rev. E 92, 032124 (2015)

    Article  ADS  Google Scholar 

  29. H. Wang, G. Wu, D. Chen, Phys. Scr. 86, 015001 (2012)

    Article  ADS  Google Scholar 

  30. X. He, J. He, J. Zheng, Physica A 391, 6594 (2012)

    Article  ADS  Google Scholar 

  31. X.L. Huang, Y. Liu, Z. Wang, X.Y. Niu, Eur. Phys. J. Plus 129, 4 (2014)

    Article  ADS  Google Scholar 

  32. Y. Zheng, P. Hanggi, D. Polletti, Phys. Rev. E 94, 012137 (2016)

    Article  ADS  Google Scholar 

  33. H. Wang, S. Liu, J. He, Phys. Rev. E 79, 041113 (2009)

    Article  ADS  Google Scholar 

  34. W. Hubner, G. Lefkidis, C.D. Dong, D. Chaudhuri, L. Chotorlishvili, J. Berakdar, Phys. Rev. B 90, 024401 (2014)

    Article  ADS  Google Scholar 

  35. M. Azimi, L. Chotorlishvili, S.K. Mishra, T. Vekua, W. Hubner, J. Berakdar, New J. Phys. 16, 063018 (2014)

    Article  ADS  Google Scholar 

  36. E. Albayrak, Int. J. Quantum Inf. 11, 1350021 (2013)

    Article  MathSciNet  Google Scholar 

  37. J.-Z. He, X. He, J. Zheng, Int. J. Theor. Phys. 51, 2066 (2012)

    Article  Google Scholar 

  38. F. Altintas, Ö.E. Müstecaplioğlu, Phys. Rev. E 92, 022142 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  39. J. Ronagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  40. O. Abah, J. Ronagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 109, 203006 (2012)

    Article  ADS  Google Scholar 

  41. O. Fialko, D.W. Hallwood, Phys. Rev. Lett. 108, 085303 (2012)

    Article  ADS  Google Scholar 

  42. K. Zhang, F. Bariani, P. Meystre, Phys. Rev. Lett. 112, 150602 (2014)

    Article  ADS  Google Scholar 

  43. B. Sothmann, M. Büttiker, EPL 99, 27001 (2012)

    Article  ADS  Google Scholar 

  44. H.T. Quan, P. Zhang, C.P. Sun, Phys. Rev. E 73, 036122 (2006)

    Article  ADS  Google Scholar 

  45. F. Altintas, A.Ü.C. Hardal, Ö.E. Müstecaplioğlu, Phys. Rev. A 91, 023816 (2015)

    Article  ADS  Google Scholar 

  46. A.U.C. Hardal, N. Aslan, C.M. Wilson, Ö.E. Müstecaplıoğlu, arXiv:1708.01182 (2017)

  47. T.B. Batalhao, A.M. Souza, L. Mazzola, R. Auccaise, R.S. Sarthour, I.S. Oliveira, J. Goold, G.D. Chiara, M. Paternostro, R.M. Serra, Phys. Rev. Lett. 113, 140601 (2014)

    Article  ADS  Google Scholar 

  48. X.Y. Zhang, X.L. Huang, X.X. Yi, J. Phys. A: Math. Theor. 47, 455002 (2014)

    Article  ADS  Google Scholar 

  49. S. Cakmak, F. Altintas, Ö.E. Müstecaplioğlu, Eur. Phys. J. Plus 131, 197 (2016)

    Article  Google Scholar 

  50. D. Türkpençe, Ö.E. Müstecaplioğlu, Phys. Rev. E 93, 012145 (2016)

    Article  Google Scholar 

  51. D. Türkpençe, F. Altintas, M. Paternostro, Ö.E. Müstecaplioğlu, EPL 117, 50002 (2017)

    Article  Google Scholar 

  52. V. Mehta, R.S. Johal, Phys. Rev. E 96, 032110 (2017)

    Article  ADS  Google Scholar 

  53. S. Chand, A. Biswas, Phys. Rev. E 95, 032111 (2017)

    Article  ADS  Google Scholar 

  54. S. Chand, A. Biswas, EPL 118, 60003 (2017)

    Article  ADS  Google Scholar 

  55. D. Newman, F. Mintert, A. Nazir, Phys. Rev. E 95, 032139 (2017)

    Article  ADS  Google Scholar 

  56. S. Cakmak, F. Altintas, A. Gencten, Ö.E. Müstecaplioğlu, Eur. Phys. J. D 71, 75 (2017)

    Article  ADS  Google Scholar 

  57. A. Alecce, F. Galve, N.L. Gullo, L. Dell’Anna, F. Plastina, R. Zambrini, New J. Phys. 17, 075007 (2015)

    Article  ADS  Google Scholar 

  58. K.W. Sun, R. Li, G.F. Zhang, Eur. Phys. J. D 71, 230 (2017)

    Article  ADS  Google Scholar 

  59. L.M. Zhao, G.F. Zhang, Quantum Inf. Process. 16, 216 (2017)

    Article  ADS  Google Scholar 

  60. G.F. Zhang, Y.C. Hou, A.L. Ji, Solid State Commun. 151, 790 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Çakmak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmak, S., Türkpençe, D. & Altintas, F. Special coupled quantum Otto and Carnot cycles. Eur. Phys. J. Plus 132, 554 (2017). https://doi.org/10.1140/epjp/i2017-11811-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11811-3

Navigation