Skip to main content
Log in

Reconstruction of inflation from scalar field non-minimally coupled with the Gauss-Bonnet term

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we analyze the early time inflation in a scalar-tensor theory of gravity where the scalar field is minimally coupled with the Gauss-Bonnet four-dimensional topological invariant. The theory belongs to a class of Horndeski models where the field equations are at the second order, like in General Relativity. A viable inflationary scenario must correctly reproduce the last Plank satellite data. By starting from some simple assumptions on the field and on the coupling function between the field and the Gauss-Bonnet term, we derive the spectral index and the tensor-to-scalar ratio of the model. Once the model is viable, it is finally possible to fully reconstruct its Lagrangian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Guth, Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  2. K. Sato, Mon. Not. R. Astron. Soc. 195, 467 (1981)

    Article  ADS  Google Scholar 

  3. K. Sato, Phys. Lett. 99B, 66 (1981)

    Article  ADS  Google Scholar 

  4. A.D. Linde, Lect. Notes Phys. 738, 1 (2008) arXiv:0705.0164 [hep-th]

    Article  ADS  Google Scholar 

  5. D.S. Gorbunov, V.A. Rubakov, Introduction to the Theory of the Early Universe: Hot Big Bang Theory (2011)

  6. C. Armendariz-Picon, T. Damour, V. Mukhanov, Phys. Lett. B 458, 209 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Garriga, V.F. Mukhanov, Phys. Lett. B 458, 219 (1999) arXiv:hep-th/9904176

    Article  ADS  MathSciNet  Google Scholar 

  8. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000) astro-ph/0004134

    Article  ADS  Google Scholar 

  9. Planck Collaboration (P.A.R. Ade), arXiv:1502.01589 [astro-ph.CO]

  10. G.W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974)

    Article  Google Scholar 

  11. L. Amendola, Phys. Lett. B 301, 175 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. C. Deffayet, X. Gao, D.A. Steer, G. Zahariade, Phys. Rev. D 84, 064039 (2011) arXiv:1103.3260 [hep-th]

    Article  ADS  Google Scholar 

  13. A. De Felice, S. Tsujikawa, JCAP 03, 030 (2013) arXiv:1301.5721 [hep-th]

    Article  ADS  Google Scholar 

  14. A. De Felice, T. Kobayashi, S. Tsujikawa, Phys. Lett. B 706, 123 (2011) arXiv:1108.4242 [gr-qc]

    Article  ADS  Google Scholar 

  15. T. Kobayashi, M. Yamaguchi, J. Yokoyama, Prog. Theor. Phys. 126, 511 (2011) arXiv:1105.5723 [hep-th]

    Article  ADS  Google Scholar 

  16. K. Kamada, T. Kobayashi, M. Yamaguchi, J. Yokoyama, Phys. Rev. D 83, 083515 (2011) arXiv:1012.4238 [astro-ph.CO]

    Article  ADS  Google Scholar 

  17. T. Qiu, Y.T. Wang, JHEP 04, 130 (2015) arXiv:1501.03568 [astro-ph.CO]

    Article  ADS  Google Scholar 

  18. Y. Rabochaya, S. Zerbini, arXiv:1509.03720 [gr-qc]

  19. R. Myrzakulov, L. Sebastiani, Astrophys. Space Sci. 361, 62 (2016) arXiv:1512.00402 [gr-qc]

    Article  ADS  Google Scholar 

  20. R. Myrzakulov, L. Sebastiani, Symmetry 8, 57 (2016) arXiv:1606.00711 [gr-qc]

    Article  Google Scholar 

  21. A.A. Starobinsky, S.V. Sushkov, M.S. Volkov, JCAP 06, 007 (2016) arXiv:1604.06085 [hep-th]

    Article  ADS  Google Scholar 

  22. M. De Laurentis, M. Paolella, S. Capozziello, Phys. Rev. D 91, 083531 (2015) arXiv:1503.04659 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Nojiri, S.D. Odintsov, M. Sasaki, Phys. Rev. D 71, 123509 (2005) hep-th/0504052

    Article  ADS  Google Scholar 

  25. S. Nojiri, S.D. Odintsov, M. Sami, Phys. Rev. D 74, 046004 (2006) hep-th/0605039

    Article  ADS  Google Scholar 

  26. R. Banerjee, S. Chakraborty, A. Mitra, P. Mukherjee, Cosmological implications of shift symmetric Galileon field, arXiv:1705.06941 [gr-qc]

  27. V. Mukhanov, Eur. Phys. J. C 73, 2486 (2013) arXiv:1303.3925 [astro-ph.CO]

    Article  ADS  Google Scholar 

  28. V. Mukhanov, arXiv:1409.2335 [astro-ph.CO]

  29. R. Myrzakulov, L. Sebastiani, S. Zerbini, Eur. Phys. J. C 75, 215 (2015) arXiv:1502.04432 [gr-qc]

    Article  ADS  Google Scholar 

  30. L. Sebastiani, S. Myrzakul, R. Myrzakulov, Reconstruction of $k$-essence inflation in Horndeski gravity, arXiv:1702.00064 [gr-qc]

  31. I. Buchbinder, S.D. Odintsov, I. Shapiro, Effective Action in Quantum Gravity (IOP, 1992)

  32. M. Gerbino, K. Freese, S. Vagnozzi, M. Lattanzi, O. Mena, E. Giusarma, S. Ho, Impact of neutrino properties on the estimation of inflationary parameters from current and future observations, arXiv:1610.08830 [astro-ph.CO]

  33. K. Bamba, R. Myrzakulov, S.D. Odintsov, L. Sebastiani, Phys. Rev. D 90, 043505 (2014) arXiv:1403.6649 [hep-th]

    Article  ADS  Google Scholar 

  34. K. Bamba, S.D. Odintsov, Symmetry 7, 220 (2015) arXiv:1503.00442 [hep-th]

    Article  MathSciNet  Google Scholar 

  35. L. Sebastiani, R. Myrzakulov, Int. J. Geom. Meth. Mod. Phys. 12, 1530003 (2015) arXiv:1506.05330 [gr-qc]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Sebastiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastiani, L., Myrzakul, S. & Myrzakulov, R. Reconstruction of inflation from scalar field non-minimally coupled with the Gauss-Bonnet term. Eur. Phys. J. Plus 132, 514 (2017). https://doi.org/10.1140/epjp/i2017-11789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11789-8

Navigation