Legendre polynomial modeling for vibrations of guided Lamb waves modes in [001]c, [011]c and [111]c polarized (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (x = 0.29 and 0.33) piezoelectric plates: Physical phenomenon of multiple intertwining of An and Sn modes

Regular Article
  • 15 Downloads

Abstract.

Guided wave devices have recently become one of the most important applications in the industry because such waves are directly related to applications in sensor technology, chemical sensing, agricultural science, fields of bio-sensing and surface acoustic wave (SAW) devices that are used in electronic filters and signal processing. On that account, this numerical investigation aims to study the propagation behavior of guided Lamb waves in a (\(1-x\))Pb(Mg1/3Nb2/3)O3-x PbTiO3 [PMN-x PT] (\( x=0.29\) or 0.33) piezoelectric single crystal plate. In fact, the PMN-xPT (\( x=0.29\) or 0.33) piezoelectric crystals are being polarized along \([001]c\), \( [011]c\) and \( [111]c\) of the cubic reference directions so that the macroscopic symmetries are tetragonal 4mm, orthogonal mm2 and rhombohedral 3m, respectively. Both open- and short-circuit conditions are considered. Here, the Legendre polynomial method is proposed to solve the guided Lamb waves equations. The validity of the proposed method is illustrated by comparison with the ordinary differential equation (ODE). The convergence of this method is discussed. Consequently, the converged results are obtained with very low truncation order M . This constitutes a major advantage of the present method when compared with the other matrix methods. There is cross-crossings among multiple modes for both symmetric (\( S_{n}\)) and the anti-symmetric (\( A_{n}\)) guided Lamb waves propagation. A displacement field has been illustrated to judge whether \(S_{n}\) and \(A_{n}\) modes cross with each other. Moreover, electric displacement, stress field and electric potential for the open-circuit case were presented for both \( S_{0}\) and \( A_{0}\) Lamb modes.

References

  1. 1.
    J. Curie, P. Curie, Bull. Soc. Mineral. France 3, 90 (1880)Google Scholar
  2. 2.
    C.M. Yeum, H. Sohn, J.B. Ihn, Wave Motion 48, 358 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    F. May, J. Dual, Wave Motion 43, 311 (2012)CrossRefGoogle Scholar
  4. 4.
    B. Lin, V. Giurgiutiu, Struct. Health Monitor. 11, 109 (2012)CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, R.W. Whatmore, Integr. Ferroelectr. 41, 43 (2001)CrossRefGoogle Scholar
  6. 6.
    S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    H. Nai-Xing, L. Tian-Quan, Z. Rui, C. Wen-Wu, Chin. Phys. Lett. 31, 104302 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    E.W. Sun, W.W. Cao, Progr. Mater. Sci. 65, 124 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    J.P. Han, W.W. Cao, Appl. Phys. Lett. 83, 731 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    S.E. Park,T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997)CrossRefGoogle Scholar
  11. 11.
    T. Liu, C.S. Lynch, Acta Mater. 51, 407 (2003)CrossRefGoogle Scholar
  12. 12.
    R.J. Kazys, R. Sliteris, J. Sestoke, Sensors 17, 2365 (2017)CrossRefGoogle Scholar
  13. 13.
    C. Othmani, F. Takali, A. Njeh, Optik 148, 63 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    E. Blanc, G. Chiavassa, B. Lombard, J. Acoust. Soc. Am. 134, 4610 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A. Perino, R. Orta, G. Barla, Rock Mech. Rock Eng. 45, 901 (2012)ADSGoogle Scholar
  16. 16.
    F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 132, 153 (2017)CrossRefGoogle Scholar
  17. 17.
    F. Ebrahimi, A. Dabbagh, M.R. Barati, Eur. Phys. J. Plus 131, 433 (2016)CrossRefGoogle Scholar
  18. 18.
    F. Takali, A. Njeh, D. Schneider, M.H. Ben Ghozlen, Acta Acust. United Acust. 98, 223 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Chaudhary, S.A. Sahu, A. Singhal, Acta Mech. 228, 495 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    C. Othmani, S. Dahmen, A. Njeh, M.H. Ben Ghozlen, Mech. Res. Commun. 74, 27 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Othmani, F. Takali, A. Njeh, M.H. Ben Ghozlen, Physica B 496, 82 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    C. Othmani, F. Takali, A. Njeh, Superlattices Microstruct. 106, 86 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    C. Othmani, F. Takali, A. Njeh, Superlattices Microstruct. 111, 396 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    C. Othmani, F. Takali, A. Njeh, M.H. Ben Ghozlen, Optik 142, 401 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    R. Zhang, B. Jiang, W. Cao, J. Appl. Phys. 90, 3471 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Wu, K. Ma, Y. Cao, Y. Jia, A. Xie, J. Chen, Y. Zhang, H. Li, R.K. Zheng, H. Luo, Appl. Phys. Lett. 103, 112904 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    R. Zhang, W. Cao, Appl. Phys. Lett. 85, 6380 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    L.P. Solie, B.A. Auld, J. Acoust. Soc. Am. 54, 50 (1973)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Li, R.B. Thompson, J. Acoust. Soc. Am. 87, 1911 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    C. Chen, Y. Xiang, Physica B 407, 1099 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    M. Eskandari, H.M. Shodja, J. Sound Vib. 313, 195 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory of Physics of Materials, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations