Investigation of various travelling wave solutions to the extended (2+1)-dimensional quantum ZK equation

  • Haci Mehmet Baskonus
  • Hasan Bulut
  • Tukur Abdulkadir Sulaiman
Regular Article

Abstract.

In this paper, with the aid of the Wolfram Mathematica 9 program, we obtain some novel complex hyperbolic function solutions to the extended (2+1)-dimensional quantum Zakharov-Kuznetsov equation by using the sine-Gordon expansion method. We find some complex and hyperbolic function solutions. Subsequently, we plot 2D surfaces representing the obtained solutions by considering some suitable values of the parameters. At the end of this paper, we compare our results with the existing results in the literature by presenting comprehensive conclusions.

References

  1. 1.
    M.F. El-Sabbagh, R. Zait, R.M. Abdelazeem, J. Math. 10, 61 (2014)Google Scholar
  2. 2.
    N. Kadkhoda, H. Jafari, Iran. J. Numer. Anal. Optim. 6, 43 (2016)Google Scholar
  3. 3.
    P.N. Ryabov, D.I. Sinelshchikov, M.B. Kochanov, Appl. Math. Comput. 218, 3965 (2011)MathSciNetGoogle Scholar
  4. 4.
    M.S. Islam, K. Khan, A.H. Arnous, New Trends Math. Sci. 3, 46 (2015)MathSciNetGoogle Scholar
  5. 5.
    E.M.E. Zayed, G.M. Moatimid, A. Al-Nowehy, Sci. J. Math. Res. 5, 19 (2015)Google Scholar
  6. 6.
    H. Bulut, H.M. Baskonus, E. Cuvelek, Math. Lett. 1, 10 (2015)Google Scholar
  7. 7.
    E.J. Parkes, B.R. Duffy, P.C. Abbott, Phys. Lett. A 295, 280 (2002)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A.H. Bhrawy, M.M. Tharwat, A. Yildirim, M.A. Abdelkawy, Indian J. Phys. 869, 1107 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    T.A. Nofal, J. Egypt. Math. Soc. 24, 204 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Younis, A. Zafar, Int. J. Innov. Appl. Stud. 2, 661 (2013)Google Scholar
  11. 11.
    E.M.E. Zayed, J. Math. Res. Appl. 2, 5 (2014)Google Scholar
  12. 12.
    J. Akter, M.A. Akbar, New Trends Math. Sci. 4, 12 (2016)CrossRefGoogle Scholar
  13. 13.
    J. He, X. Wu, Chaos, Solitons Fractals 30, 700 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    S.T. Mohyud-Din, M.A. Noor, K.I. Noor, J. King Saud Univ. (Science) 22, 213 (2010)CrossRefGoogle Scholar
  15. 15.
    E.M.E. Zayed, H.M. Abdel-Rahman, Appl. Math. E-Notes 10, 235 (2010)MathSciNetGoogle Scholar
  16. 16.
    A. Hendi, Int. J. Recent Res. Appl. Stud. 3, 83 (2010)Google Scholar
  17. 17.
    M. Eslami, Computat. Methods Differ. Equ. 2, 115 (2014)Google Scholar
  18. 18.
    A.M. Wazwaz, J. Math. Phys. 16, 1212 (1977)Google Scholar
  19. 19.
    H.M. Baskonus, D. Altankoc, H. Bulut, Nonlinear Sci. Lett. A 7, 67 (2016)Google Scholar
  20. 20.
    M.F. Aghdaei, J. Manafianheris, J. Math. Ext. 5, 91 (2011)MathSciNetGoogle Scholar
  21. 21.
    D.J. Evans, K.R. Raslan, Int. J. Comput. Math. 82, 897 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Y. Xu, K. Sun, S. He, L. Zhang, Eur. Phys. J. Plus 131, 186 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Zhang, K. Sun, S. He, H. Wang, Y. Xu, Eur. Phys. J. Plus 132, 31 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    X.J. Yang, F. Gao, H.M. Srivastava, Comput. Math. Appl. 73, 203 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Atangana, J.F. Botha, J. Earth Sci. Clim. Chang. 3, 115 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Atangana, B.S.T. Alkahtani, Arab. J. Geosci. 9, 8 (2015)CrossRefGoogle Scholar
  27. 27.
    V.E. Zakharov, E.A. Kuznetsov, Zh. Eksp. Teor. Fiz. 66, 594 (1974)ADSGoogle Scholar
  28. 28.
    Y. Jiang, Y. Lu, C. Chen, J. Nonlinear Math. Phys. 23, 157 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Wang, T. Xu, S. Johnson, A. Biswas, Astrophys. Space Sci. 349, 317 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    L.G. Garcia, F. Haas, L.P.L. de Oliveira, J. Goedert, Phys. Plasmas 12, 012302 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    S. Ghebache, M. Tribeche, Open Acoust. J. 3, 40 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    W.M. Moslem, S. Ali, P.K. Shukla, X.Y. Tang, Phys. Plasmas 14, 082308 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    H. Zhen, B. Tian, Y. Wang, H. Zhong, W. Sun, Phys. Plasmas 21, 012304 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    S. Ali, W.M. Moslem, P.K. Shukla, I. Kourakis, Phys. Lett. A 366, 606 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    C. Yan, Phys. Lett. A 22, 77 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    H.M. Baskonus, Nonlinear Dyn. 86, 177 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    H. Bulut, T.A. Sulaiman, H.M. Baskonus, Opt. Quantum Electron. 48, 564 (2016)CrossRefGoogle Scholar
  38. 38.
    H.M. Baskonus, T.A. Sulaiman, H. Bulut, Optik 131, 1036 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Z. Yan, H. Zhang, Phys. Lett. A 252, 291 (1999)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    A.M. Wazwaz, Phys. Scr. 85, 025006 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Haci Mehmet Baskonus
    • 1
  • Hasan Bulut
    • 2
  • Tukur Abdulkadir Sulaiman
    • 2
    • 3
  1. 1.Munzur UniversityDepartment of Computer EngineeringTunceliTurkey
  2. 2.Firat UniversityDepartment of MathematicsElazigTurkey
  3. 3.Federal University, DutseDepartment of MathematicsJigawaNigeria

Personalised recommendations