Performance of thermal deposition and mass flux condition on bioconvection nanoparticles containing gyrotactic microorganisms

Regular Article

Abstract.

This is an attempt to investigate the influence of thermal radiation on the movement of motile gyrotactic microorganisms submerged in a water-based nanofluid flow over a nonlinear stretching sheet. The mathematical modeling of this physical problem leads to a system of nonlinear coupled partial differential equations. The problem is tackled by converting nonlinear partial differential equations into the system of highly nonlinear ordinary differential equations. The resulting nonlinear equations of momentum, energy, concentration of nanoparticles and motile gyrotactic microorganisms along with the mass flux condition are solved numerically by means of a shooting algorithm. The effects of the involved physical parameters of interest are discussed graphically. The values of the skin friction coefficient, Nusselt number, Sherwood number and local density number of motile microorganisms are tabulated for detailed analysis on the flow pattern at the stretching surface. It is concluded that the nanofluid temperature is an increasing function of the thermal radiation and the Biot number parameter. An opposite trend is observed for the local Nusselt number. The association with the preceding results in limiting sense is shown as well. A tremendous agreement of the current study in a restrictive manner is achieved as well. In addition, flow configurations through stream functions are presented and deliberated significantly.

References

  1. 1.
    S.U.S. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles (ASME, 1995) pp. 99--105Google Scholar
  2. 2.
    U. Rea, T. McKrell, L. Hu, Jacopo Buongiorno, Int. J. Heat Mass Transfer 52, 2042 (2009)CrossRefGoogle Scholar
  3. 3.
    Y. Xuan, Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000)CrossRefGoogle Scholar
  4. 4.
    A. Behseresht, A. Noghrehabadadi, M. Ghalambaz, Chem. Eng. Res. Des. 92, 447 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Noghrehabadi, M. Ghalambaz, A. Ghanbarzadeh, J. Mech. 30, 265 (2014)CrossRefGoogle Scholar
  6. 6.
    K. Das, Alex. Eng. J. 53, 757 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Esfandiary, A. Habibzadeh, H. Sayehvand, Transp. Phenom. Nano Micro. Scales 4, 11 (2016)Google Scholar
  8. 8.
    L.X. Cheng, E.P. Bandarra, J.R. Thome, J. Nanosci. Nanotechnol. 8, 3315 (2008)CrossRefGoogle Scholar
  9. 9.
    F. Selimefendigil, H.F. Öztop, J. Taiwan Inst. Chem. Eng. 45, 2150 (2014)CrossRefGoogle Scholar
  10. 10.
    F. Selimefendigil, H.F. Öztop, Int. J. Heat Mass Transfer 98, 40 (2016)CrossRefGoogle Scholar
  11. 11.
    F. Selimefendigil, H.F. Öztop, Int. J. Mech. Sci. 118, 113 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Selimefendigil, H.F. Öztop, Adv. Powder Tech. 26, 1663 (2015)CrossRefGoogle Scholar
  13. 13.
    F. Selimefendigil, H.F. Öztop, A.J. Chamkha, Eur. J. Mech. B/Fluids 61, 77 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Selimefendigil, H.F. Öztop, J. Magn. & Magn. Mater. 417, 327 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    F. Selimefendigil, H.F. Öztop, J. Taiwan Inst. Chem. Eng. 70, 168 (2017)CrossRefGoogle Scholar
  16. 16.
    S.A.M. Mehryan, F.M. Kashkooli, M. Soltani, K. Raahemifar, PLoS ONE 11, 0157598 (2016)CrossRefGoogle Scholar
  17. 17.
    A.V. Kuznetsov, Eur. J. Mech. B/Fluids 25, 223 (2006)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    A.A. Avramenko, A.V. Kuznetsov, Int. Commun. Heat Mass Transfer 31, 1057 (2004)CrossRefGoogle Scholar
  19. 19.
    A.V. Kuznetsov, Int. Commun. Heat Mass Transf. 37, 1421 (2010)CrossRefGoogle Scholar
  20. 20.
    P. Rana, R. Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17, 212 (2012)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M.M. Rashidi, N. Freidoonimehr, A. Hosseini, A.O. Beg, T.K. Hung, Meccanica 49, 469 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Ghalambaz, E. Izadpanahi, A. Noghrehabadi, A. Chamkha, Can. J. Phys. 93, 725 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    M. Goyal, R. Bhargava, Microfluid Nanofluid 17, 591 (2014)CrossRefGoogle Scholar
  24. 24.
    F. Mabood, W.A. Khan, A.I.M. Ismail, J. Magn. & Magn. Mater. 374, 569 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    A.V. Kuznetsov, D.A. Nield, Int. J. Therm. Sci. 49, 243 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Aziz, W.A. Khan, I. Pop, Int. J. Therm. Sci. 56, 48 (2012)CrossRefGoogle Scholar
  27. 27.
    R.C. Bataller, J. Mater. Process. Technol. 203, 176 (2008)CrossRefGoogle Scholar
  28. 28.
    N.A. Yacob, A. Ishak, I. Pop, Int. J. Therm. Sci. 50, 133 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Ishak, N. Azizah, Y.N. Bachok, Meccanica 46, 795 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    S. Yao, T. Fang, Y. Zhong, Commun. Nonlinear Sci. Numer. Simul. 16, 752 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 50, 1326 (2011)CrossRefGoogle Scholar
  32. 32.
    E. Magyari, Commun. Nonlinear Sci. Numer. Simul. 16, 599 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    N. Bachok, A. Ishak, I. Pop, Int. J. Therm. Sci. 49, 1663 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Nadeem, R. Ul Haq, J. Comput. Theor. Nanosci. 11, 32 (2014)CrossRefGoogle Scholar
  35. 35.
    N.S. Akbar, S. Nadeem, R. Ul Haq, Z.H. Khan, Chinese. J. Aeronaut. 26, 1389 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Khan, W.A. Khan, AIP Adv. 6, 025211 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    E.M. Sparrow, R.D. Cess, Radiation Heat Transfer (Hemisphere, Washington, DC, 1978)Google Scholar
  38. 38.
    Z. Iqbal, E. Azhar, Z. Mehmood, E.N. Maraj, A. Kamran, J. Mol. Liq. 230, 295 (2017)CrossRefGoogle Scholar
  39. 39.
    Z. Mehmood, Z. Iqbal, J. Mol. Liq. 224, 1083 (2016)CrossRefGoogle Scholar
  40. 40.
    W.A. Khan, I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesHITEC UniversityTaxilaPakistan

Personalised recommendations