Skip to main content
Log in

Performance of thermal deposition and mass flux condition on bioconvection nanoparticles containing gyrotactic microorganisms

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This is an attempt to investigate the influence of thermal radiation on the movement of motile gyrotactic microorganisms submerged in a water-based nanofluid flow over a nonlinear stretching sheet. The mathematical modeling of this physical problem leads to a system of nonlinear coupled partial differential equations. The problem is tackled by converting nonlinear partial differential equations into the system of highly nonlinear ordinary differential equations. The resulting nonlinear equations of momentum, energy, concentration of nanoparticles and motile gyrotactic microorganisms along with the mass flux condition are solved numerically by means of a shooting algorithm. The effects of the involved physical parameters of interest are discussed graphically. The values of the skin friction coefficient, Nusselt number, Sherwood number and local density number of motile microorganisms are tabulated for detailed analysis on the flow pattern at the stretching surface. It is concluded that the nanofluid temperature is an increasing function of the thermal radiation and the Biot number parameter. An opposite trend is observed for the local Nusselt number. The association with the preceding results in limiting sense is shown as well. A tremendous agreement of the current study in a restrictive manner is achieved as well. In addition, flow configurations through stream functions are presented and deliberated significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.U.S. Choi, J.A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles (ASME, 1995) pp. 99--105

  2. U. Rea, T. McKrell, L. Hu, Jacopo Buongiorno, Int. J. Heat Mass Transfer 52, 2042 (2009)

    Article  Google Scholar 

  3. Y. Xuan, Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000)

    Article  Google Scholar 

  4. A. Behseresht, A. Noghrehabadadi, M. Ghalambaz, Chem. Eng. Res. Des. 92, 447 (2014)

    Article  Google Scholar 

  5. A. Noghrehabadi, M. Ghalambaz, A. Ghanbarzadeh, J. Mech. 30, 265 (2014)

    Article  Google Scholar 

  6. K. Das, Alex. Eng. J. 53, 757 (2014)

    Article  Google Scholar 

  7. M. Esfandiary, A. Habibzadeh, H. Sayehvand, Transp. Phenom. Nano Micro. Scales 4, 11 (2016)

    Google Scholar 

  8. L.X. Cheng, E.P. Bandarra, J.R. Thome, J. Nanosci. Nanotechnol. 8, 3315 (2008)

    Article  Google Scholar 

  9. F. Selimefendigil, H.F. Öztop, J. Taiwan Inst. Chem. Eng. 45, 2150 (2014)

    Article  Google Scholar 

  10. F. Selimefendigil, H.F. Öztop, Int. J. Heat Mass Transfer 98, 40 (2016)

    Article  Google Scholar 

  11. F. Selimefendigil, H.F. Öztop, Int. J. Mech. Sci. 118, 113 (2016)

    Article  Google Scholar 

  12. F. Selimefendigil, H.F. Öztop, Adv. Powder Tech. 26, 1663 (2015)

    Article  Google Scholar 

  13. F. Selimefendigil, H.F. Öztop, A.J. Chamkha, Eur. J. Mech. B/Fluids 61, 77 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Selimefendigil, H.F. Öztop, J. Magn. & Magn. Mater. 417, 327 (2016)

    Article  ADS  Google Scholar 

  15. F. Selimefendigil, H.F. Öztop, J. Taiwan Inst. Chem. Eng. 70, 168 (2017)

    Article  Google Scholar 

  16. S.A.M. Mehryan, F.M. Kashkooli, M. Soltani, K. Raahemifar, PLoS ONE 11, 0157598 (2016)

    Article  Google Scholar 

  17. A.V. Kuznetsov, Eur. J. Mech. B/Fluids 25, 223 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.A. Avramenko, A.V. Kuznetsov, Int. Commun. Heat Mass Transfer 31, 1057 (2004)

    Article  Google Scholar 

  19. A.V. Kuznetsov, Int. Commun. Heat Mass Transf. 37, 1421 (2010)

    Article  Google Scholar 

  20. P. Rana, R. Bhargava, Commun. Nonlinear Sci. Numer. Simul. 17, 212 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  21. M.M. Rashidi, N. Freidoonimehr, A. Hosseini, A.O. Beg, T.K. Hung, Meccanica 49, 469 (2014)

    Article  Google Scholar 

  22. M. Ghalambaz, E. Izadpanahi, A. Noghrehabadi, A. Chamkha, Can. J. Phys. 93, 725 (2015)

    Article  ADS  Google Scholar 

  23. M. Goyal, R. Bhargava, Microfluid Nanofluid 17, 591 (2014)

    Article  Google Scholar 

  24. F. Mabood, W.A. Khan, A.I.M. Ismail, J. Magn. & Magn. Mater. 374, 569 (2015)

    Article  ADS  Google Scholar 

  25. A.V. Kuznetsov, D.A. Nield, Int. J. Therm. Sci. 49, 243 (2010)

    Article  Google Scholar 

  26. A. Aziz, W.A. Khan, I. Pop, Int. J. Therm. Sci. 56, 48 (2012)

    Article  Google Scholar 

  27. R.C. Bataller, J. Mater. Process. Technol. 203, 176 (2008)

    Article  Google Scholar 

  28. N.A. Yacob, A. Ishak, I. Pop, Int. J. Therm. Sci. 50, 133 (2011)

    Article  Google Scholar 

  29. A. Ishak, N. Azizah, Y.N. Bachok, Meccanica 46, 795 (2011)

    Article  MathSciNet  Google Scholar 

  30. S. Yao, T. Fang, Y. Zhong, Commun. Nonlinear Sci. Numer. Simul. 16, 752 (2011)

    Article  ADS  Google Scholar 

  31. O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 50, 1326 (2011)

    Article  Google Scholar 

  32. E. Magyari, Commun. Nonlinear Sci. Numer. Simul. 16, 599 (2011)

    Article  ADS  Google Scholar 

  33. N. Bachok, A. Ishak, I. Pop, Int. J. Therm. Sci. 49, 1663 (2010)

    Article  Google Scholar 

  34. S. Nadeem, R. Ul Haq, J. Comput. Theor. Nanosci. 11, 32 (2014)

    Article  Google Scholar 

  35. N.S. Akbar, S. Nadeem, R. Ul Haq, Z.H. Khan, Chinese. J. Aeronaut. 26, 1389 (2013)

    Article  Google Scholar 

  36. M. Khan, W.A. Khan, AIP Adv. 6, 025211 (2016)

    Article  ADS  Google Scholar 

  37. E.M. Sparrow, R.D. Cess, Radiation Heat Transfer (Hemisphere, Washington, DC, 1978)

  38. Z. Iqbal, E. Azhar, Z. Mehmood, E.N. Maraj, A. Kamran, J. Mol. Liq. 230, 295 (2017)

    Article  Google Scholar 

  39. Z. Mehmood, Z. Iqbal, J. Mol. Liq. 224, 1083 (2016)

    Article  Google Scholar 

  40. W.A. Khan, I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, Z., Ahmad, B. Performance of thermal deposition and mass flux condition on bioconvection nanoparticles containing gyrotactic microorganisms. Eur. Phys. J. Plus 132, 486 (2017). https://doi.org/10.1140/epjp/i2017-11776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11776-1

Navigation