Advertisement

New class of geodesic radiating systems

  • A. K. Tiwari
  • S. D. Maharaj
Regular Article
  • 27 Downloads

Abstract.

The Einstein field equations and junction conditions are studied for a radiating object in which particles are travelling in geodesic motion. The boundary condition at the surface of the star is a Riccati equation in general. We show that several new classes of exact solutions exist. The solutions have a simple form and can be expressed in terms of elementary functions. Earlier models are regained which were found by direct integration of the differential equation and the Lie theory of extended groups.

References

  1. 1.
    R. Sharma, R. Tikekar, Gen. Relativ. Gravit. 44, 2503 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    B.C. Tewari, Gen. Relativ. Gravit. 45, 1547 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    B.C. Tewari, Astrophys. Space Sci. 342, 73 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    S. Das, R. Sharma, B.C. Paul, R. Deb, Astrophys. Space Sci. 361, 99 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S. Thirukkanesh, M. Govender, Int. J. Mod. Phys. D 22, 1350087 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    R. Sharma, S. Das, R. Tikekar, Gen. Relativ. Gravit. 47, 25 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    N.F. Naidu, M. Govender, Int. J. Mod. Phys. D 25, 165009 (2016)CrossRefGoogle Scholar
  8. 8.
    P.C. Vaidya, Proc. Indian Acad. Sci. A 33, 264 (1951)ADSGoogle Scholar
  9. 9.
    N.O. Santos, Mon. Not. R. Astron. Soc. 216, 403 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    C.A. Kolassis, N.O. Santos, D. Tsoubelis, J. Astrophys. 327, 755 (1988)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Grammenos, C. Kolassis, Phys. Lett. A 169, 5 (1992)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Govender, S.D. Maharaj, R. Maartens, Class. Quantum Grav. 15, 323 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    S. Thirukkanesh, S.D. Maharaj, J. Math. Phys. 50, 022502 (2009)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Govender, S. Thirukkanesh, Int. J. Theor. Phys. 48, 3558 (2009)CrossRefGoogle Scholar
  15. 15.
    G.Z. Abebe, S.D. Maharaj, K.S. Govinder, Gen. Relativ. Gravit. 46, 1650 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    G.Z. Abebe, S.D. Maharaj, K.S. Govinder, Gen. Relativ. Gravit. 46, 1733 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    R. Mohanlal, S.D. Maharaj, A.K. Tiwari, R. Narain, Gen. Relativ. Gravit. 48, 87 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    S.D. Maharaj, A.K. Tiwari, R. Mohanlal, R. Narain, J. Math. Phys. 57, 092501 (2016)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations