Effect of the Hartmann number on phase separation controlled by magnetic field for binary mixture system with large component ratio

  • Wang Heping
  • Li Xiaoguang
  • Zang Duyang
  • Hu Rui
  • Geng Xingguo
Regular Article
  • 29 Downloads

Abstract.

This paper presents an exploration for phase separation in a magnetic field using a coupled lattice Boltzmann method (LBM) with magnetohydrodynamics (MHD). The left vertical wall was kept at a constant magnetic field. Simulations were conducted by the strong magnetic field to enhance phase separation and increase the size of separated phases. The focus was on the effect of magnetic intensity by defining the Hartmann number (Ha) on the phase separation properties. The numerical investigation was carried out for different governing parameters, namely Ha and the component ratio of the mixed liquid. The effective morphological evolutions of phase separation in different magnetic fields were demonstrated. The patterns showed that the slant elliptical phases were created by increasing Ha, due to the formation and increase of magnetic torque and force. The dataset was rearranged for growth kinetics of magnetic phase separation in a plot by spherically averaged structure factor and the ratio of separated phases and total system. The results indicate that the increase in Ha can increase the average size of separated phases and accelerate the spinodal decomposition and domain growth stages. Specially for the larger component ratio of mixed phases, the separation degree was also significantly improved by increasing magnetic intensity. These numerical results provide guidance for setting the optimum condition for the phase separation induced by magnetic field.

References

  1. 1.
    H. Yasuda, I. Ohnaka, O. Kawakami, K. Ueno, K. Kishio, ISIJ Int. 43, 942 (2003)CrossRefGoogle Scholar
  2. 2.
    Z. Ren, J. Jin, J. Mater. Sci. 27, 4663 (1992)CrossRefGoogle Scholar
  3. 3.
    M. Shimotomai, K.I. Maruta, Scr. Mater. 42, 499 (2000)CrossRefGoogle Scholar
  4. 4.
    J.W. Cahn, Metall. Mater. Trans. A 10, 119 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    R.N. Singh, F. Sommer, Rep. Prog. Phys. 60, 57 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    H. Wang, X. Geng, X. Li, D. Zang, Eur. Phys. J. E 39, 102 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    M. Shimotomai, K. Maruta, K. Mine, M. Matsui, Acta Mater. 51, 2921 (2003)CrossRefGoogle Scholar
  8. 8.
    H. Wang, X. Li, Y. Li, X. Geng, Ultrason. Sonochem. 36, 101 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Sheikholeslami, Eur. Phys. J. Plus 132, 55 (2017)CrossRefGoogle Scholar
  10. 10.
    M. Sheikholeslami, Eur. Phys. J. Plus 131, 413 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Sheikholeslami, Phys. Lett. A 381, 494 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    M. Sheikholeslami, J. Mol. Liq. 234, 364 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Sheikholeslami, J. Mol. Liq. 231, 555 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Sheikholeslami, J. Mol. Liq. 225, 903 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Sheikholeslami, M. Sadoughi, Int. J. Heat Mass Transfer 113, 106 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Sheikholeslami, S.A. Shehzad, Int. J. Heat Mass Transfer 106, 1261 (2017)CrossRefGoogle Scholar
  17. 17.
    M. Sheikholeslami, M.M. Bhatti, Int. J. Heat Mass Transfer 111, 1039 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Sheikholeslami, Eur. Phys. J. Plus 248, 129 (2014)Google Scholar
  19. 19.
    M. Sheikholeslami, Int. J. Hydrogen Energy 42, 821 (2017)CrossRefGoogle Scholar
  20. 20.
    K. Kapcia, S. Robaszkiewicz, J. Phys. Condens. Matter 25, 065603 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    M. Takeda, Y. Tanase, T. Kubozono, A. Akihisa, S. Nishio, B. Wan, IEEE T. Appl. Supercon. 22, 3700404 (2012)CrossRefGoogle Scholar
  22. 22.
    O.Y. Gorobets, Y.I. Gorobets, V.P. Rospotniuk, A.A. Kyba, Y.A. Legenkiy, J. Solid State Electr. 19, 3001 (2015)CrossRefGoogle Scholar
  23. 23.
    C.D. Cao, G.P. Görler, D.M. Herlach, B. Wei, Mat. Sci. Eng. A 325, 503 (2002)CrossRefGoogle Scholar
  24. 24.
    J. Wang, J. Li, R. Hu, E. Beaugnon, Mater. Lett. 139, 288 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Zhou, R. Hu, J. Li, H. Chang, H. Kou, L. Zhou, Appl. Phys. Lett. 102, 694 (2013)Google Scholar
  26. 26.
    M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E. 54, 5041 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    N.B. Morley, S. Smolentsev, R. Munipalli, M. Ni, D. Gao, M. Abdou, Fusion Eng. Des. 72, 3 (2004)CrossRefGoogle Scholar
  28. 28.
    P.J. Dellar, J. Comput. Phys. 179, 95 (2002)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Breyiannis, D. Valougeorgis, Phys. Rev. E 69, 65 (2004)CrossRefGoogle Scholar
  30. 30.
    T. Kakeshita, T. Saburi, K. Kindo, S. Endo, Jpn. J. Appl. Phys. 36, 7083 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    M. Takeda, N. Tomomori, T. Akazawa, K. Nishigaki, A. Iwata, IEEE Trans. Appl. Supercond. 14, 1543 (2004)CrossRefGoogle Scholar
  32. 32.
    M. Sheikholeslami, M. Gorji-Bandpy, S.M. Seyyedi, H.B. Rokni, S. Soleimani, Powder Technol. 247, 87 (2013)CrossRefGoogle Scholar
  33. 33.
    M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, S. Soleimani, J. Taiwan Inst. Chem. E. 45, 40 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Gan, A. Xu, G. Zhang, Y.J. Li, Phys. Rev. E. 84, 046715 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28, 258 (1958)ADSCrossRefGoogle Scholar
  36. 36.
    A. Xu, G. Gonnella, A. Lamura, Phys. Rev. E. 67, 056105 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    S. Puri, V. Wadhawan, Kinetics of Phasee Transitions (CRC Press, Boca Raton, 2009)Google Scholar
  38. 38.
    L.E. Reichl, A Modern Course in Statistical Physics (Arnold, London, 1980)Google Scholar
  39. 39.
    Y.H. Qian, D. D’Humiéres, P. Lallemand, Europhys. Lett. 17, 479 (1992)ADSCrossRefGoogle Scholar
  40. 40.
    M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5041 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    P.H. Kao, R.J. Yang, Int. J. Heat Mass Transfer 50, 3315 (2007)CrossRefGoogle Scholar
  42. 42.
    G. Barrios, R. Rechtman, J. Rojas, R. Tovar, J. Fluid Mech. 522, 91 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    H.R. Ashorynejad, A.A. Mohamad, M. Sheikholeslami, Int. J. Therm. Sci. 64, 240 (2013)CrossRefGoogle Scholar
  44. 44.
    A. Lammura, G. Gonnella, Physica A 294, 295 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982)Google Scholar
  46. 46.
    D. Givord, Introduction to Magnetism and Magnetic Materials, in Magnetism and Synchrotron Radiation, edited by E. Beaurepaire, J.P. Kappler, G. Krill, F. Scheurer, Lecture Notes in Physics, Vol. 565 (Springer, Berlin, Heidelberg, 2001) pp. 3--23,  https://doi.org/10.1007/3-540-44954-X_1
  47. 47.
    R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley-Interscience, 2000)Google Scholar
  48. 48.
    J.J. Abbott, O. Ergeneman, M.P. Kummer, A.M. Hirt, B.J. Nelson, IEEE T. Robot. 23, 1 (2007)CrossRefGoogle Scholar
  49. 49.
    Y. Gan, A. Xu, G. Zhang, Y. Li, H. Li, Phys. Rev. E. 84, 046715 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Wang Heping
    • 1
  • Li Xiaoguang
    • 1
  • Zang Duyang
    • 1
  • Hu Rui
    • 2
  • Geng Xingguo
    • 1
  1. 1.Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations