Viscous dissipative transport of a ferrofluid ( Fe3O4 over a moving surface influenced by magnetic dipole and thermal deposition: Finite difference algorithm

  • E. N. Maraj
  • Z. Iqbal
  • Zaffar Mehmood
  • Ehtsham Azhar
Regular Article
  • 16 Downloads

Abstract.

The present article is a debate on the ferrofluidic transport over a moving surface influenced by a magnetic dipole. The convective heat impact on fluid is also taken into account. The physical flow of the fluid is modeled and transformed into a system of ordinary differential equations employing boundary layer approximations suitable transformations. The implicit finite difference numerical technique is applied to solve the acquired system. The effects of several parameters on momentum and temperature of the ferrofluid are investigated through graphs and tables. It is concluded that the ferrofluid interaction parameter reduces the momentum profile whereas it increases the temperature distribution. The viscous dissipation parameter results in a decrease in the temperature and a reverse trend is observed for the Eckert number. In addition, Eckert and radiation parameters increase the shear stress at the wall and decrease the heat flux rate.

References

  1. 1.
    S.S. Papell, Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, US Patent 3,215,572 (1965)Google Scholar
  2. 2.
    H.I. Andersson, O.A. Valnes, Acta Mec. 128, 39 (1998)CrossRefGoogle Scholar
  3. 3.
    G.H.R. Kefayati, J. Mol. Liq. 191, 1 (2014)CrossRefGoogle Scholar
  4. 4.
    M. Sheikholeslami, M.M. Rashidi, J. Taiwan Inst. Chem. Eng. 56, 6 (2015)CrossRefGoogle Scholar
  5. 5.
    M.M. Rahman, S. Mojumder, S. Saha, A.H. Joarder, R. Saidur, A.G. Naim, Int. J. Heat Mass Transfer 89, 1316 (2015)CrossRefGoogle Scholar
  6. 6.
    B.C. Sakiadis, AIChE 7, 26 (1961)CrossRefGoogle Scholar
  7. 7.
    L.J. Crane, J. App. Math. Mech. 21, 645 (1970)Google Scholar
  8. 8.
    T.R. Mahapatra, A.S. Gupta, Int. J. Nonlinear Mech. 39, 811 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    P. Singh, C.B. Gupta, Ind. J. Theor. Phys. 53, 111 (2005)Google Scholar
  10. 10.
    N.S. Akbar, S. Nadeem, R. Ul Haq, Z.H. Khan, Indian J. Phys. 87, 1121 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    F. Aman, A. Ishak, I. Pop, Int. Commun. Heat Mass Transf. 47, 68 (2013)CrossRefGoogle Scholar
  12. 12.
    N.S. Akbar, S. Nadeem, Z.H. Khan, J. Mol. Liq. 196, 21 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Zeeshan, A. Majeed, R. Ellahi, J. Mol. Liq. 215, 549 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Majeed, A. Zeeshan, R. Ellahi, J. Mol. Liq. 223, 528 (2016)CrossRefGoogle Scholar
  15. 15.
    T. Yasmeen, T. Hayat, M.I. Khan, M. Imtiaz, A. Alsaedi, J. Mol. Liq. 223, 1000 (2016)CrossRefGoogle Scholar
  16. 16.
    E.N. Maraj, N.S. Akbar, Z. Iqbal, E. Azhar, J. Mol. Liq. 233, 334 (2017)CrossRefGoogle Scholar
  17. 17.
    T. Hayat, Z. Iqbal, M. Qasim, S. Obaidat, Int. J. Heat Mass Transf. 55, 1817 (2012)CrossRefGoogle Scholar
  18. 18.
    H.B. Keller, Annu. Rev. Fluid Mech. 10, 417 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • E. N. Maraj
    • 1
  • Z. Iqbal
    • 1
  • Zaffar Mehmood
    • 1
  • Ehtsham Azhar
    • 1
  1. 1.Department of Mathematics, Faculty of SciencesHITEC University TaxilaTaxilaPakistan

Personalised recommendations