Numerical and analytical simulation of the production process of ZrO2 hollow particles

Regular Article

Abstract.

In this paper, the production process of hollow particles from the agglomerated particles is addressed analytically and numerically. The important parameters affecting this process, in particular, the initial porosity level of particles and the plasma gun types are investigated. The analytical model adopts a combination of quasi-steady thermal equilibrium and mechanical balance. In the analytical model, the possibility of a solid core existing in agglomerated particles is examined. In this model, a range of particle diameters (50μm \( \le D_{{\rm p}0} \le 160\) μ m) and various initial porosities (\( 0.2 \le p \le 0.7\)) are considered. The numerical model employs the VOF technique for two-phase compressible flows. The production process of hollow particles from the agglomerated particles is simulated, considering an initial diameter of \(D_{{\rm p}0} = 60\) μm and initial porosity of \( p = 0.3\), \( p = 0.5\), and \( p = 0.7\). Simulation results of the analytical model indicate that the solid core diameter is independent of the initial porosity, whereas the thickness of the particle shell strongly depends on the initial porosity. In both models, a hollow particle may hardly develop at small initial porosity values (\( p < 0.3\)), while the particle disintegrates at high initial porosity values ( \( p > 0.6\).

References

  1. 1.
    T.C.-M. Wu, M. Bussmann, J. Mostaghimi, J. Therm. Spray Technol. 18, 957 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    O.P. Solonenko, I.P. Gulyaev, A.V. Smirnov, Tech. Phys. Lett. 34, 1050 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    F.N. Longo, N.F. Bader III, M.R. Dorfman, Hollow sphere ceramic particles for abradable coatings (Google Patents, 1984)Google Scholar
  4. 4.
    K.H. Moh, H.G. Sowman, T.E. Wood, Sol gel-derived ceramic bubbles (Google Patents, 1991)Google Scholar
  5. 5.
    D.L. Wilcox, J.G. Liu, J.-L. Look, Hollow ceramic microspheres by sol-gel dehydration with improved control over size and morphology (Google Patents, 1996)Google Scholar
  6. 6.
    M. Chatterjee, D. Enkhtuvshin, B. Siladitya, D. Ganguli, J. Mater. Sci. 33, 4937 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    K. Arai, K. Yamada, H. Hirano, M. Satoh, Process for producing inorganic microspheres (Google Patents, 1998)Google Scholar
  8. 8.
    Z. Károly, J. Szépvölgyi, Powder Technol. 132, 211 (2003)CrossRefGoogle Scholar
  9. 9.
    O.P. Solonenko, I.P. Gulyaev, A.V. Smirnov, J. Therm. Sci. Technol. 6, 219 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Pravdic, M. Gani, J. Mater. Sci. 31, 3487 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    W. Lee, S. Choi, S.-M. Oh, D.-W. Park, Thin Solid Films 529, 394 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    O. Solonenko, J. Phys.: Conf. Ser. 1, 012028 (2014)Google Scholar
  13. 13.
    I. Gulyaev, Ceram. Int. 41, 101 (2015)CrossRefGoogle Scholar
  14. 14.
    F. Rösler, D. Brüggemann, Heat Mass Transf. 47, 1027 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    S. Alavi, M. Passandideh-Fard, J. Mostaghimi, J. Therm. Spray Technol. 21, 1278 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Zhu, S. Kamnis, S. Gu, Acta Mater. 90, 77 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    O.P. Solonenko, A.V. Smirnov, Spreading and solidification of hollow molten droplet under its impact onto substrate: computer simulation and experiment, in Complex Systems: 5th International Workshop on Complex Systems, Vol 1 (AIP Publishing, 2008) pp. 561--568Google Scholar
  18. 18.
    H. Russell, J. Am. Ceram. Soc. 18, 1 (1935)CrossRefGoogle Scholar
  19. 19.
    M.F. Zhukov, I. Zasypkin, Thermal Plasma Torches: Design, Characteristics, Application (Cambridge Int Science Publishing, 2007)Google Scholar
  20. 20.
    M.I. Boulos, P. Fauchais, E. Pfender, Thermal Plasmas, Fundamentals and Applications (Plenum Press, New York, 1994)Google Scholar
  21. 21.
    V. Aubrecht, M. Bartlova, N. Bogatyreva, Radiation properties of argon thermal plasma in various spectral regions, in Proceedings of the 29th International Conference on Phenomena in Ionized Gases, Cancún, Mexico, July 12--17 July (2009)Google Scholar
  22. 22.
    L. Pershin, L. Chen, J. Mostaghimi, J. Therm. Spray Technol. 17, 608 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    B. Sourd, J. Aubreton, M.-F. Elchinger, M. Labrot, U. Michon, J. Phys. D: Appl. Phys. 39, 1105 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    A. Kumar, S. Gu, H. Tabbara, S. Kamnis, Surf. Coat. Technol. 220, 164 (2013)CrossRefGoogle Scholar
  25. 25.
    N.I. Kolev, Multiphase Flow Dynamics 5: Nuclear thermal hydraulics, 2nd edition (Springer-Verlag, Berlin, Heidelberg, 2011)Google Scholar
  26. 26.
    S. Miller, H. Jasak, D. Boger, E. Paterson, A. Nedungadi, Comput. Fluids 87, 132 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    H. Safaei, M.D. Emami, H.S. Jazi, J. Mostaghimi, J. Therm. Spray Technol. https://doi.org/10.1007/s11666-017-0632-8 (2017)
  28. 28.
    J.U. Brackbill, J. Comput. Phys. 100, 335 (1992)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    V.R. Voller, C. Prakash, Int. J. Heat Mass Transfer 30, 1709 (1987)CrossRefGoogle Scholar
  30. 30.
    R. Viskanta, J. Heat Transfer 108, 174 (1986)CrossRefGoogle Scholar
  31. 31.
    A. Brent, V. Voller, K. Reid, Numer. Heat Transf., Part A Appl. 13, 297 (1988)ADSGoogle Scholar
  32. 32.
    J.D. Anderson, J. Wendt, Computational Fluid Dynamics, Vol. 206 (Springer, 1995)Google Scholar
  33. 33.
    E. Safaei Ardakani, Numerical and Experimental Study of the Arc Fluctuations in a DC Plasma Torch (University of Toronto, 2016)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations