Applying explicit symplectic-like methods to nonconservative nonseparable systems

Regular Article

Abstract.

Extended phase-space explicit symplectic-like integrators were recently developed for nonseparable Hamiltonian systems. Following this idea, we establish numerical integration codes about the explicit symplectic-like algorithms for nonconservative nonseparable problems with velocity-dependent interaction forces, such as a damped harmonic oscillator and the orbital motion of a dust particle experiencing Poynting-Robertson drag. We use integral invariant relations of these nonconservative energies as accuracy checks in numerical integrations. It is found that these explicit symplectic-like methods still make the energy errors remain bounded in the nonconservative case. It is shown that the explicit symplectic-like integrators with the midpoint permutations are superior to those with the sequence two permutations of momenta and coordinates in the numerical accuracy although the latter algorithm is efficiently applicable to these dissipative systems.

References

  1. 1.
    E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration (Springer, Berlin, 1999)Google Scholar
  2. 2.
    D. Tsang, C.R. Galley, L.C. Stein, A. Turner, Astrophys. J. Lett. 809, L9 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    P. Pihajoki, Celest. Mech. Dyn. Astron. 121, 211 (2015)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Liu, X. Wu, G. Huang, F. Liu, Mon. Not. R. Astron. Soc. 459, 1968 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    L. Liu, X. Wu, G. Huang, Gen. Relativ. Gravit. 49, 28 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    J. Luo, X. Wu, G. Huang, F. Liu, Astrophys. J. 834, 64 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S.Y. Zhong, X. Wu, S.Q. Liu, X.F. Deng, Phys. Rev. D 82, 124040 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    L. Mei, M. Ju, X. Wu, S. Liu, Mon. Not. R. Astron. Soc. 435, 2246 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    L. Mei, X. Wu, F. Liu, Eur. Phys. J. C 73, 2413 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    G. Huang, X. Ni, X. Wu, Eur. Phys. J. C 74, 3012 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    X. Wu, L. Mei, G. Huang, S. Liu, Phys. Rev. D 91, 024042 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    X. Wu, G. Huang, Mon. Not. R. Astron. Soc. 452, 3617 (2015)ADSGoogle Scholar
  13. 13.
    L. Huang, X. Wu, D.Z. Ma, Eur. Phys. J. C 76, 488 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    D. Li, X. Wu, Mon. Not. R. Astron. Soc. 469, 3031 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    T.Y. Huang, K. Innanen, Astron. J. 88, 870 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    C.R. Galley, Phys. Rev. Lett. 110, 174301 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    H. Yoshida, Phys. Lett. A 150, 262 (1990)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    X. Wu, T.-Y. Huang, X.-S. Wan, H. Zhang, Astron. J. 133, 2643 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    D.Z. Ma, X. Wu, J.F. Zhu, New Astron. 13, 216 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    D.Z. Ma, X. Wu, S.Y. Zhong, Astrophys. J. 687, 1294 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    S.-C. Wang, X. Wu, F.-Y. Liu, Mon. Not. R. Astron. Soc. 463, 1352 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsNanchang UniversityNanchangChina
  2. 2.School of Astronomy and PhysicsSun Yat-sen UniversityZhuhaiChina

Personalised recommendations