Axisymmetric Stokes flow past a composite spheroidal shell of immiscible fluids

Regular Article
  • 17 Downloads

Abstract.

We study the flow of an incompressible Newtonian fluid past a composite spheroidal shell whose shape deviates slightly from that of a sphere. A composite particle referred to in this paper is a spheroidal liquid core covered with a porous layer. The Brinkman equation is used for the flow inside the porous medium and the Stokes equation is used for the flow in the fluid region. We assume that the external and internal viscous fluids are immiscible and the viscosity of the porous medium is different than the viscosity of pure liquid. The Ochoa-Tapia and Whitaker’s stress jump boundary condition for tangential stress is applied on the porous-fluid interface. Velocity and pressure distributions are found and the drag force acting on the spheroidal shell is evaluated. The analytical solution is obtained by dividing the flow into three regions. Both type of spheroids, oblate and prolate are considered. Numerical results of the normalized hydrodynamic drag force acting on the spheroidal shell are tabulated and represented graphically for different values of the parameters characterizing the stress jump coefficient, separation parameter, permeability, deformation parameter, and viscosity ratios. The analysis of the flow pattern is done by plotting streamlines and several renowned cases are deduced.

References

  1. 1.
    J.S. Hadamard, C. R. Acad. Sci. Paris 152, 1735 (1911)Google Scholar
  2. 2.
    W. Rybczynski, Bull. Acad. Sci. Cracovie, Ser. A 40, 40 (1911)Google Scholar
  3. 3.
    G.G. Stokes, Trans. Cambridge Philos. Soc. 9, 8 (1851)ADSGoogle Scholar
  4. 4.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1965)Google Scholar
  5. 5.
    E. Bart, Chem. Eng. Sci. 23, 193 (1968)CrossRefGoogle Scholar
  6. 6.
    G. Hetsroni, S. Haber, Rheol. Acta 9, 488 (1970)CrossRefGoogle Scholar
  7. 7.
    E. Wacholder, D. Weihs, Chem. Eng. Sci. 27, 1817 (1972)CrossRefGoogle Scholar
  8. 8.
    T.C. Lee, H.J. Keh, Eur. J. Mech. B: Fluids 34, 97 (2012)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Choudhuri, B. Sri Padmavati, Appl. Math. Comput. 243, 644 (2014)MathSciNetGoogle Scholar
  10. 10.
    R. Niefer, P.N. Kaloni, J. Eng. Math. 14, 107 (1980)CrossRefGoogle Scholar
  11. 11.
    H. Ramkissoon, Z. Angew. Math. Mech. 65, 635 (1985)CrossRefMathSciNetGoogle Scholar
  12. 12.
    H. Ramkissoon, S.R. Majumdar, Z. Angew. Math. Mech. 68, 155 (1988)CrossRefMathSciNetGoogle Scholar
  13. 13.
    E.I. Saad, Meccanica 47, 2055 (2012)CrossRefMathSciNetGoogle Scholar
  14. 14.
    M. Krishna Prasad, M. Kaur, Sadhana 41, 1463 (2016)Google Scholar
  15. 15.
    D.D. Joseph, L.N. Tao, Z. Angew. Math. Mech. 44, 361 (1964)CrossRefGoogle Scholar
  16. 16.
    D.N. Sutherland, C.T. Tan, Chem. Eng. Sci. 25, 1948 (1970)CrossRefGoogle Scholar
  17. 17.
    H.C. Brinkman, Appl. Sci. Res. A 1, 27 (1947)CrossRefGoogle Scholar
  18. 18.
    P. Debye, A.M. Bueche, J. Chem. Phys. 16, 573 (1948)ADSCrossRefGoogle Scholar
  19. 19.
    G. Ooms, P.F. Mijnlieff, H.L. Beckers, J. Chem. Phys. 53, 4123 (1970)ADSCrossRefGoogle Scholar
  20. 20.
    G. Neale, N. Epstein, W. Nader, Chem. Eng. Sci. 28, 1865 (1973)CrossRefGoogle Scholar
  21. 21.
    Y. Qin, P.N. Kaloni, J. Eng. Math. 22, 177 (1988)CrossRefGoogle Scholar
  22. 22.
    B.S. Bhatt, N.C. Sacheti, J. Phys. D.: Appl. Phys. 27, 37 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    D. Srinivasacharya, Z. Angew. Math. Mech. 83, 499 (2003)CrossRefGoogle Scholar
  24. 24.
    T. Zlatanovski, Q. J. Mech. Appl. Math. 52, 111 (1999)CrossRefMathSciNetGoogle Scholar
  25. 25.
    H.J. Keh, J. Chou, Chem. Eng. Sci. 59, 407 (2004)CrossRefGoogle Scholar
  26. 26.
    H.J. Keh, Y.S. Lu, J. Fluids Struct. 20, 735 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    E.I. Saad, Can. J. Phys. 88, 689 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    J.A. Ochoa-Tapia, S. Whitaker, Int. J. Heat Mass Transfer 38, 2635 (1995)CrossRefGoogle Scholar
  29. 29.
    J.A. Ochoa-Tapia, S. Whitaker, Int. J. Heat Mass Transfer 38, 2647 (1995)CrossRefGoogle Scholar
  30. 30.
    A.V. Kuznetsov, Appl. Sci. Res. 56, 53 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    A. Bhattacharyya, G.P. Raja Sekhar, Z. Angew. Math. Phys. 56, 475 (2005)CrossRefMathSciNetGoogle Scholar
  32. 32.
    P.K. Yadav, A. Tiwari, S. Deo, A. Filippov, S. Vasin, Acta Mech. 215, 193 (2010)CrossRefGoogle Scholar
  33. 33.
    J. Prakash, G.P. Raja Sekhar, M. Kohr, Z. Angew. Math. Phys. 62, 1027 (2011)CrossRefMathSciNetGoogle Scholar
  34. 34.
    D. Srinivasacharya, M. Krishna Prasad, Z. Angew. Math. Mech. 91, 824 (2011)CrossRefGoogle Scholar
  35. 35.
    D. Srinivasacharya, M. Krishna Prasad, ANZIAM J. 52, 289 (2011)CrossRefMathSciNetGoogle Scholar
  36. 36.
    D. Srinivasacharya, M. Krishna Prasad, Eur. Phys. J. Plus. 128, 9 (2013)CrossRefGoogle Scholar
  37. 37.
    E.I. Saad, Meccanica 48, 1747 (2013)CrossRefMathSciNetGoogle Scholar
  38. 38.
    E.A. Ashmawy, Eur. Phys. J. Plus 130, 163 (2015)CrossRefGoogle Scholar
  39. 39.
    E.A. Ashmawy, Eur. J. Mech. B/Fluids 50, 147 (2015)ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    S.I. Vasin, T.V. Kharitonova, Colloid J. 73, 18 (2011)CrossRefGoogle Scholar
  41. 41.
    S.I. Vasin, T.V. Kharitonova, Colloid J. 73, 297 (2011)CrossRefGoogle Scholar
  42. 42.
    C. Pozrikidis, Modeling and Simulation of Capsules and Biological Cells (Chapman & Hall/CRC, New York, 2003)Google Scholar
  43. 43.
    B.R. Jaiswal, B.R. Gupta, J. Appl. Fluid Mech. 8, 339 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of MathematicsNational Institute of TechnologyChhattisgarhIndia

Personalised recommendations