A convective study of Al2O3-H2O and Cu- H2O nano-liquid films sprayed over a stretching cylinder with viscous dissipation

  • Ali Saleh Alshomrani
  • Taza Gul
Regular Article


This study is related with the analysis of spray distribution considering a nanofluid thin layer over the slippery and stretching surface of a cylinder with thermal radiation. The distribution of the spray rate is designated as a function of the nanolayer thickness. The applied temperature used during spray phenomenon has been assumed as a reference temperature with the addition of the viscous dissipation term. The diverse behavior of the thermal radiation with magnetic and chemical reaction has been cautiously observed, which has consequences in causing variations in the spray distribution and heat transmission. Nanofluids have been used as water-based like Al2O3-H2O, Cu- H2O and have been examined under the consideration of momentum and thermal slip boundary conditions. The basic equations have been transformed into a set of nonlinear equations by using suitable variables for alteration. The approximate results of the problem have been achieved by using the optimal approach of the Homotopy Analysis Method (HAM). We demonstrate our results with the help of the numerical (ND-Solve) method. In addition, we found a close agreement of the two methods which is confirmed through graphs and tables. The rate of the spray pattern under the applied pressure term has also been obtained. The maximum cooling performance has been obtained by using the Cu water with the small values of the magnetic parameter and alumina for large values of the magnetic parameter. The outcomes of the Cu-water and Al2O3-H2O nanofluids have been linked to the published results in the literature. The impact of the physical parameters, like the skin friction coefficient, and the local Nusselt number have also been observed and compared with the published work. The momentum slip and thermal slip parameters, thermal radiation parameter, magnetic parameter and heat generation/absorption parameter effects on the spray rate have been calculated and discussed.


  1. 1.
    S.U.S. Choi, ASME Fluids Eng. Div. 66, 99 (1995)Google Scholar
  2. 2.
    W. Yu, H.Q. Xie, L.F. Chen, Y. Li, Powder Technol. 197, 218 (2010)CrossRefGoogle Scholar
  3. 3.
    W. Yu, H.Q. Xie, Y. Li, L.F. Chen, Powder Technol. 230, 14 (2012)CrossRefGoogle Scholar
  4. 4.
    L.F. Chen, W. Yu, H.Q. Xie, Y. Li, Powder Technol. 231, 18 (2012)CrossRefGoogle Scholar
  5. 5.
    H.Q. Xie, L.F.J. Chen, Chem. Eng. 56, 1030 (2011)Google Scholar
  6. 6.
    W. Yu, H.Q. Xie, W. Chen, J. Appl. Phys. 107, 094317 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    B. Xiao, Y. Yang, L. Chen, Powder Technol. 239, 409 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Cai, X. Hu, B. Xiao, Y. Zhou, W. Wei, Int. J. Heat Mass Transfer 105, 623 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Buongiorno, J. Heat Transf. 128, 240 (2006)CrossRefGoogle Scholar
  10. 10.
    N.S. Khan, T. Gul, S. Islam, I. Khan, M.A. Aisha, S.A. Ali, Appl. Sci. 7, 271 (2017)CrossRefGoogle Scholar
  11. 11.
    M.T. Sk, K. Das, P.K. Kundu, Appl. Therm. Eng. 104, 758 (2016)CrossRefGoogle Scholar
  12. 12.
    A.K. Pandey, M. Kumar, Alex. Eng. J., (2017)
  13. 13.
    D. Pal, G. Mandal, K. Vajravelu, Appl. Math. Comput. 238, 208 (2014)MathSciNetGoogle Scholar
  14. 14.
    A.A. Hakeem, N.V. Ganesh, B. Ganga, J. Magn. & Magn. & Mater. 381, 243 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    A.K. Pandey, M. Kumar, Alex. Eng. J. 56, 55 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Sheikholeslami, R. Ellahi, Int. J. Heat Mass Transf. 89, 799 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Sheikholeslami, J. Mol. Liq. 234, 364 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Sheikholeslami, J. Mol. Liq. 229, 137 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Sheikholeslami, Phys. Lett. A 381, 494 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    M. Sheikholeslami, Eur. Phys. J. Plus 129, 248 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Sheikholeslami, Eur. Phys. J. Plus 131, 413 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Sheikholeslami, Eur. Phys. J. Plus 132, 55 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Sheikholeslami, H.B. Rokni, Int. J. Heat Mass Transfer 115, 1203 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Sheikholeslami, H.B. Rokni, Int. J. Heat Mass Transfer 42, 15393 (2017)Google Scholar
  25. 25.
    C.Y. Wang, Chem. Eng. Commun. 193, 869 (2006)CrossRefGoogle Scholar
  26. 26.
    M. Sheikholeslami, M. Hatami, D.D. Ganji, J. Mol. Liq. 211, 577 (2015)CrossRefGoogle Scholar
  27. 27.
    N.S. Khan, T. Gul, S. Islam, W. Khan, Eur. Phys. J. Plus 132, 11 (2017)CrossRefGoogle Scholar
  28. 28.
    Shijun Liao, Homotopy Analysis Method in Nonlinear Differential Equations (Springer-Verlag, Berlin, Heidelberg, 2012)Google Scholar
  29. 29.
    S.J. Liao, Appl. Math. Comput. 147, 499 (2004)MathSciNetGoogle Scholar
  30. 30.
    S.J. Liao, Appl. Math. Mech. 19, 957 (1998)CrossRefGoogle Scholar
  31. 31.
    V.G. Gupta, S. Gupta, Surv. Math. Appl. 7, 105 (2012)MathSciNetGoogle Scholar
  32. 32.
    A. Ishak, R. Nazar, I. Pop, Energy Convers. Manag. 49, 3265 (2008)CrossRefGoogle Scholar
  33. 33.
    H.R. Ashorynejad, M. Sheikholeslami, I. Pop, D.D. Ganji, Heat Mass Transfer 49, 427 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    C.Y. Wang, Phys Fluids. 31, 466 (1988)ADSCrossRefGoogle Scholar
  35. 35.
    C.Y. Wang, Chiu-On., Int. J. Non-Linear Mech. 46, 1191 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Departement of MathematicsGovernment Superior Science College (Higher Education Department) Khyber PakhtunkhwaPeshawarPakistan
  3. 3.Department of MathematicsCity University of Science and Information Technology (CUSIT)PeshawarPakistan

Personalised recommendations