Skip to main content

Advertisement

Log in

Modelling and analysis of transient state during improved coupling procedure with the grid for DFIG based wind turbine generator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The aim of this study is to enhance DFIG based Wind Energy Conversion Systems (WECS) dynamics during grid coupling. In this paper, a system modelling and a starting/coupling procedure for this generator to the grid are proposed. The proposed non-linear system is a variable structure system (VSS) and has two different states, before and after coupling. So, two different state models are given to the system to analyse transient stability during the coupling. The given model represents well the transient state of the machine, through which, a behaviour assessment of the generator before, during and after connection is given based on simulation results. For this, a 300 kW DFIG based wind generation system model was simulated on the Matlab/SIMULINK environment. We judge the proposed procedure to be practical, smooth and stability improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Renewables 2017 Global Status Report, accessed Sep 2017, http://www.ren21.net/gsr-2017/

  2. Ming Cheng, Ying Zhu, Energy Convers. Manag. 88, 332 (2014)

    Article  Google Scholar 

  3. Alshehri Abdullah, Afef Fekih, An Overview of the Current State of Wind Energy Technology Development in the US, in 2013 IEEE Green Technologies Conference, 4-5 April 2013, Denver, CO, USA (IEEE, 2013) pp. 120--126, https://doi.org/10.1109/GreenTech.2013.26

  4. Wind Report, Global Wind Energy Council (GWEC), 2016, accessed on September 2016, available on-line at the following link: http://gwec.net/publications/global-wind-report-2/global-wind-report-2016/

  5. V.N. Pande, U.M. Mate, Shailaja Kurode, Electr. Power Syst. Res. 100, 73 (2013)

    Article  Google Scholar 

  6. S. Abdeddaim, A. Betka, Electr. Power Energy Syst. 49, 234 (2013)

    Article  Google Scholar 

  7. Arjang Yousefi-Talouki, Edris Pouresmaeil, Bo Nørregaard Jørgensen, Electr. Power Energy Syst. 63, 600 (2014)

    Article  Google Scholar 

  8. F. Akela, T. Ghennam, E.M. Berkouk, M. Laour, Energy Convers. Manag. 78, 584 (2014)

    Article  Google Scholar 

  9. W. Yi, X. Lie, IEEE Trans. Power Deliv. 25, 367 (2010)

    Article  Google Scholar 

  10. S. Lei, H. Jiabing, IEEE Trans. Energy Convers. 27, 362 (2012)

    Article  Google Scholar 

  11. M.I. Martinez, G. Tapia, A. Susperregui, H. Camblong, IEEE Trans. Energy Convers. 27, 328 (2012)

    Article  Google Scholar 

  12. G. Abad, M.A. Rodriguez, G. Iwanski, J. Poza, IEEE Trans. Power Electron. 25, 442 (2010)

    Article  Google Scholar 

  13. M. Kenan Döşoğlu, Ali Öztürk, Adv. Eng. Softw. 45, 292 (2012)

    Article  Google Scholar 

  14. Ali Öztürk, Kenan Döşoğlu, Investigation of the control voltage and reactive power in wind farm load bus by STATCOM and SVC, in International Conference on Electrical and Electronics Engineering - ELECO 2009, 5--8 Nov. 2009, Bursa, Turkey, (2009) pp. I-60-I-64, https://doi.org/10.1109/ELECO.2009.5355356

  15. M. Kenan Döşoğlu, Int. J. Electr. Power Energy Syst. 83, 251 (2016)

    Article  Google Scholar 

  16. M. Kenan Döşoğlu, Int. J. Electr. Power Energy Syst. 78, 655 (2016)

    Article  Google Scholar 

  17. M. Kenan Döşoğlu, Ayşen Basa Arsoy, Int. J. Electr. Power Energy Syst. 78, 414 (2016)

    Article  Google Scholar 

  18. R. Pena, J.C. Clare, G.M. Asher, IEEE Proc. Electr. Power Appl. 143, 231 (1996)

    Article  Google Scholar 

  19. S.A. Gomez, J.L.R. Amenedo, Grid synchronisation of doubly fed induction generators using direct torque control, in IEEE 2002 28th Annual Conference of the Industrial Electronics Society, IECON 02, 5--8 Nov. 2002, Sevilla, Spain, Vol. 4, pp. 3338-3343, https://doi.org/10.1109/IEMDC.2007.382704

  20. Ahmed G. Abo-Khalil, Renew. Energy 44, 193 (2012)

    Article  Google Scholar 

  21. S. Kammoun, A. Marrekchi, S. Sallem, M. Kammoun, Int. J. Mod. Nonlinear Theory Appl. 3, 77 (2014)

    Article  Google Scholar 

  22. Gonzalo Abad, Jesús López, Miguel A. Rodríguez, Luis Marroyo, Grzegorz Iwanski, Doubly fed induction machine: modeling and control for wind energy generation (IEEE Press, John Wiley & Sons, Inc., New Jersey, 2011) https://doi.org/10.1002/9781118104965

  23. Hüseyin Altun, Sedat Sünter, Electr. Eng. 95, 157 (2013)

    Article  Google Scholar 

  24. Rishabh Dev Shukla, Ramesh Kumar Tripathi, Renew. Sustain. Energy Rev. 37, 69 (2014)

    Article  Google Scholar 

  25. Eduard Muljadi, Mohit Singh, Vahan Gevorgian, Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz, in IEEE Energy Conversion Congress and Exhibition Raleigh, North Carolina September 15-20, Conference Paper NREL/CP-5500-55573, June 2012 (2012) https://doi.org/10.1109/TIA.2013.2261043

  26. A. Mechter, K. Kemih, M. Ghanes, Backstepping control of a wind turbine for low wind speeds, Nonlinear Dyn., (2016) https://doi.org/10.1007/s11071-016-2655-y

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soulaymen Kammoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammoun, S., Sallem, S. & Ben Ali Kammoun, M. Modelling and analysis of transient state during improved coupling procedure with the grid for DFIG based wind turbine generator. Eur. Phys. J. Plus 132, 470 (2017). https://doi.org/10.1140/epjp/i2017-11737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11737-8

Navigation