Modelling and analysis of transient state during improved coupling procedure with the grid for DFIG based wind turbine generator

  • Soulaymen Kammoun
  • Souhir Sallem
  • Mohamed Ben Ali Kammoun
Regular Article
  • 17 Downloads

Abstract.

The aim of this study is to enhance DFIG based Wind Energy Conversion Systems (WECS) dynamics during grid coupling. In this paper, a system modelling and a starting/coupling procedure for this generator to the grid are proposed. The proposed non-linear system is a variable structure system (VSS) and has two different states, before and after coupling. So, two different state models are given to the system to analyse transient stability during the coupling. The given model represents well the transient state of the machine, through which, a behaviour assessment of the generator before, during and after connection is given based on simulation results. For this, a 300 kW DFIG based wind generation system model was simulated on the Matlab/SIMULINK environment. We judge the proposed procedure to be practical, smooth and stability improved.

References

  1. 1.
    Renewables 2017 Global Status Report, accessed Sep 2017, http://www.ren21.net/gsr-2017/
  2. 2.
    Ming Cheng, Ying Zhu, Energy Convers. Manag. 88, 332 (2014)CrossRefGoogle Scholar
  3. 3.
    Alshehri Abdullah, Afef Fekih, An Overview of the Current State of Wind Energy Technology Development in the US, in 2013 IEEE Green Technologies Conference, 4-5 April 2013, Denver, CO, USA (IEEE, 2013) pp. 120--126, https://doi.org/10.1109/GreenTech.2013.26
  4. 4.
    Wind Report, Global Wind Energy Council (GWEC), 2016, accessed on September 2016, available on-line at the following link: http://gwec.net/publications/global-wind-report-2/global-wind-report-2016/
  5. 5.
    V.N. Pande, U.M. Mate, Shailaja Kurode, Electr. Power Syst. Res. 100, 73 (2013)CrossRefGoogle Scholar
  6. 6.
    S. Abdeddaim, A. Betka, Electr. Power Energy Syst. 49, 234 (2013)CrossRefGoogle Scholar
  7. 7.
    Arjang Yousefi-Talouki, Edris Pouresmaeil, Bo Nørregaard Jørgensen, Electr. Power Energy Syst. 63, 600 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Akela, T. Ghennam, E.M. Berkouk, M. Laour, Energy Convers. Manag. 78, 584 (2014)CrossRefGoogle Scholar
  9. 9.
    W. Yi, X. Lie, IEEE Trans. Power Deliv. 25, 367 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Lei, H. Jiabing, IEEE Trans. Energy Convers. 27, 362 (2012)CrossRefGoogle Scholar
  11. 11.
    M.I. Martinez, G. Tapia, A. Susperregui, H. Camblong, IEEE Trans. Energy Convers. 27, 328 (2012)CrossRefGoogle Scholar
  12. 12.
    G. Abad, M.A. Rodriguez, G. Iwanski, J. Poza, IEEE Trans. Power Electron. 25, 442 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Kenan Döşoğlu, Ali Öztürk, Adv. Eng. Softw. 45, 292 (2012)CrossRefGoogle Scholar
  14. 14.
    Ali Öztürk, Kenan Döşoğlu, Investigation of the control voltage and reactive power in wind farm load bus by STATCOM and SVC, in International Conference on Electrical and Electronics Engineering - ELECO 2009, 5--8 Nov. 2009, Bursa, Turkey, (2009) pp. I-60-I-64, https://doi.org/10.1109/ELECO.2009.5355356
  15. 15.
    M. Kenan Döşoğlu, Int. J. Electr. Power Energy Syst. 83, 251 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Kenan Döşoğlu, Int. J. Electr. Power Energy Syst. 78, 655 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Kenan Döşoğlu, Ayşen Basa Arsoy, Int. J. Electr. Power Energy Syst. 78, 414 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Pena, J.C. Clare, G.M. Asher, IEEE Proc. Electr. Power Appl. 143, 231 (1996)CrossRefGoogle Scholar
  19. 19.
    S.A. Gomez, J.L.R. Amenedo, Grid synchronisation of doubly fed induction generators using direct torque control, in IEEE 2002 28th Annual Conference of the Industrial Electronics Society, IECON 02, 5--8 Nov. 2002, Sevilla, Spain, Vol. 4, pp. 3338-3343, https://doi.org/10.1109/IEMDC.2007.382704
  20. 20.
    Ahmed G. Abo-Khalil, Renew. Energy 44, 193 (2012)CrossRefGoogle Scholar
  21. 21.
    S. Kammoun, A. Marrekchi, S. Sallem, M. Kammoun, Int. J. Mod. Nonlinear Theory Appl. 3, 77 (2014)CrossRefGoogle Scholar
  22. 22.
    Gonzalo Abad, Jesús López, Miguel A. Rodríguez, Luis Marroyo, Grzegorz Iwanski, Doubly fed induction machine: modeling and control for wind energy generation (IEEE Press, John Wiley & Sons, Inc., New Jersey, 2011) https://doi.org/10.1002/9781118104965
  23. 23.
    Hüseyin Altun, Sedat Sünter, Electr. Eng. 95, 157 (2013)CrossRefGoogle Scholar
  24. 24.
    Rishabh Dev Shukla, Ramesh Kumar Tripathi, Renew. Sustain. Energy Rev. 37, 69 (2014)CrossRefGoogle Scholar
  25. 25.
    Eduard Muljadi, Mohit Singh, Vahan Gevorgian, Doubly Fed Induction Generator in an Offshore Wind Power Plant Operated at Rated V/Hz, in IEEE Energy Conversion Congress and Exhibition Raleigh, North Carolina September 15-20, Conference Paper NREL/CP-5500-55573, June 2012 (2012) https://doi.org/10.1109/TIA.2013.2261043
  26. 26.
    A. Mechter, K. Kemih, M. Ghanes, Backstepping control of a wind turbine for low wind speeds, Nonlinear Dyn., (2016) https://doi.org/10.1007/s11071-016-2655-y

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Soulaymen Kammoun
    • 1
  • Souhir Sallem
    • 1
  • Mohamed Ben Ali Kammoun
    • 1
  1. 1.Commande de Machines Electriques et Réseaux de Puissance (CMERP), National Engineering School of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations