Static magnetovac solutions of Einstein-Maxwell equations from stationary gravitational fields

Regular Article
  • 18 Downloads

Abstract.

An asymptotically flat solution of the static Einstein-Maxwell field equations for a mass possessing a magnetic dipole moment is constructed from the stationary gravitational solutions of Einstein’s equations using the technique of Das and Chaudhuri. The generated solutions contain monopole, dipole and other higher-mass multipoles. In the absence of magnetic field, the solution reduces to the Schwarzschild metric in the static limit. For a particular value of the magnetic parameter, the solution describes the magnetic dipole moment of a massless source. It is also shown in the paper that using the Kerr metric as seed, Bonnor’s magnetostatic solutions are reproduced faithfully by the Das and Chaudhuri technique.

References

  1. 1.
    W.B. Bonnor, Z. Phys. 190, 444 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    Ts.I. Gutsunaev, V.S. Manko, Gen. Relativ. Gravit. 20, 327 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    Ts.I. Gutsunaev, V.S. Manko, Phys. Lett. A 132, 85 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    V.S. Manko, Gen. Relativ. Gravit. 22, 799 (1990) and references thereinADSGoogle Scholar
  5. 5.
    Ts.I. Gutsunaev, V.S. Manko, S.L. Elsgolts, Class. Quantum Grav. 6, L41 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    Ts.I. Gutsunaev, V.S. Manko, Phys. Rev. D 40, 2140 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    V.S. Manko, Phys. Lett. A 181, 349 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    Ts.I. Gutsunaev, V.S. Manko, Phys. Lett. A 123, 215 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    V.S. Manko, J. Martin, E. Ruiz, N.R. Sibgatullin, M.N. Zaripov, Phys. Rev. D 49, 5144 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    H. Quevedo, B. Mashhon, Phys. Lett. A 148, 149 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    W.B. Bonnor, Z. Phys. 161, 439 (1961)ADSCrossRefGoogle Scholar
  12. 12.
    K. Schwarzschild, Berl. Akad. Ber 7, 189 (1916)Google Scholar
  13. 13.
    K.C. Das, S. Chaudhuri, Pramana J. Phys. 40, 277 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    J. Castejon-Amenedo, V.S. Manko, Phys. Rev. D 41, 2018 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963)ADSCrossRefGoogle Scholar
  16. 16.
    V.S. Manko, I.D. Novikov, Class. Quantum Grav. 9, 2477 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    F.J. Ernst, Phys. Rev. 167, 1175 (1968)ADSCrossRefGoogle Scholar
  18. 18.
    V.S. Manko, Gen. Relativ. Gravit. 24, 35 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    W. Weyl, Ann. Phys. (Leipzig) 54, 117 (1917)ADSCrossRefGoogle Scholar
  20. 20.
    H. Stephani, Exact Solutions of Einstein’s Field Equations, second edition (Cambridge University Press, Cambridge, 2003)Google Scholar
  21. 21.
    K.C. Das, S. Banerji, Gen. Relativ. Gravit. 9, 845 (1978)ADSCrossRefGoogle Scholar
  22. 22.
    K.C. Das, J. Phys. A 13, 2985 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    A. Papapetrou, Ann. Phys. B 12, 309 (1953)ADSCrossRefGoogle Scholar
  24. 24.
    S. Chaudhuri, K.C. Das, Gen. Relativ. Gravit. 29, 75 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PhysicsB.K.C. College 111/2KolkataIndia
  2. 2.Department of PhysicsUniversity of BurdwanBurdwan (W.B.)India

Personalised recommendations