Modelling Martian landslides: dynamics, velocity, and paleoenvironmental implications

  • Fabio Vittorio De Blasio
  • Giovanni Battista Crosta
Regular Article
Part of the following topical collections:
  1. Focus Point on Highlights of Planetary Science in Italy

Abstract.

Landslides on Mars exhibit features such as steep collapse, extreme deposit thinning, and long runout. We study the flow dynamics of Martian landslides particularly in Valles Marineris, where landslides are among the largest and longest. Firstly, we observe that landslides in Valles Marineris share a series of features with terrestrial landslides fallen onto glaciers. The presence of suspected glacial and periglacial morphologies from the same areas of Valles Marineris, and the results of remote sensing measurements suggest the presence of ice under the soil and into the rock slopes. Thus, we explore with numerical simulation the possibility that such landslides have been lubricated by ice. To establish a plausible rheological model for these landslides, we introduce two possible scenarios. One scenario assumes ice only at the base of the landslide, the other inside the rock-soil. A numerical model is extended here to include ice in these two settings, and the effect of lateral widening of the landslide. Only if the presence of ice is included in the calculations, do results reproduce reasonably well both the vertical collapse of landslide material in the scarp area, and the extreme thinning and runout in the distal area, which are evident characteristics of large landslides in Valles Marineris. The calculated velocity of landslides (often well in excess of 100 m/s and up to 200 m/s at peak) compares well with velocity estimates based on the run-up of the landslides on mounds. We conclude that ice may have been an important medium of lubrication of landslides on Mars, even in equatorial areas like Valles Marineris.

References

  1. 1.
    B.K. Lucchitta, J. Geophys. Res. 84, 8097 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    B.K. Lucchitta, Icarus 72, 411 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    P.J. Shaller, Analysis and implications of large Martian and terrestrial landslides, PhD Thesis, California Institute of Technology, Pasadena (1991)Google Scholar
  4. 4.
    C. Quantin, P. Allemand, C. Delacourt, Planet. Space Sci. 52, 1011 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    M.H.K. Bulmer, in Landslides: Types, Mechanisms and Modelling, edited by J.J. Clague, D. Stead (Cambridge University Press, Cambridge, 2012) pp. 393--408Google Scholar
  6. 6.
    O. Debniak, O. Kromuszczyńska, in 47th LPSC Conference (2016) paper 1890Google Scholar
  7. 7.
    M.T. Brunetti, F. Guzzetti, M. Cardinali, F. Fiorucci, M. Santangelo P. Mancinelli, G. Komatsu, L. Borselli, Earth Planet. Sci. Lett. 405, 156 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    G.B. Crosta P. Frattini, F.V. De Blasio, E. Valbuzzi, Introducing a new large inventory of Martian landslides, submitted to Earth Space Sci. (2017)Google Scholar
  9. 9.
    K.P. Harrison, R.E. Grimm, Icarus 163, 347 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    V. Soukhovitskaya, M. Manga, Icarus 180, 348 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    M.H. Bulmer, B.A. Zimmerman, Geophys. Res. Lett. 32, L06201 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    A. Lucas, A. Mangeney, Geophys. Res. Lett. 34, L10201 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    F.V. De Blasio, Planet. Space Sci. 59, 1384 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    G.B. Crosta, F.V. De Blasio, P. Frattini, Global scale analysis of Martian landslide mobility and paleoenvironmental clues, submitted to J. Geophys. Res - Planets (2017)Google Scholar
  15. 15.
    R.A. Schulz, Geophys. Res. Lett. 29, 38-1 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    F. Bigot-Cormier, D.R. Montgomery, Earth Planet. Sci. Lett. 260, 179 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    G.B. Crosta, S. Utili, F.V. De Blasio, R. Castellanza, Earth Planet. Sci. Lett. 388, 329 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    B.K. Lucchitta, A.S. McEwen, G.D. Clow, P.E. Geissler, R.B. Singer, R.A. Schultz, S.W. Squyres, The canyon system on Mars, in Mars, edited by H.H. Kiefer (University of Arizona Press, 1992) pp. 453-492Google Scholar
  19. 19.
    C. Quantin, P. Allemand, N. Mangold, C. Delacourt, Icarus 172, 555 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    P. Mazzanti, F.V. De Blasio, C. Di Bastiano, F. Bozzano, Earth Planets Space 68, 1 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    G. Laskar, M. Gastineau, F. Joutel, P. Levrard, A. Correia, Icarus 170, 343 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    V.R. Baker, Nature 412, 228 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    R.L. Shreve, Science 154, 1639 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    A.S. Post, Effects on glaciers, in The Great Alaska Earthquake of 1964, Vol. 3: Hydrology (National Academy of Sciences, Washington, U.S.A, 1968) part A, pp. 266--308Google Scholar
  25. 25.
    D. Schneider et al., Earth Surf. Process. Landforms 36, 1948 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    R. Sosio, G.B. Crosta, J.H. Chen, O. Hungr, Quat. Sci. Rev. 47, 23 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    F.V. De Blasio, Geomorphology 213, 88 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    A. Dufresne, T.R. Davies, Geomorphology 105, 171 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    M. Gourronc, O. Bourgeois, D. Mège, S. Pochat, B. Bultel, M. Massé, L. Le Deit, S. Le Mouélic, D. Mercier, Geomorphology 204, 235 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    A.S. McEwen, Geology 17, 1111 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    T. Erismann, G. Abele, Dynamics of Rockslides and Rockfalls (Springer Verlag, Berlin, 2001)Google Scholar
  32. 32.
    F.V. De Blasio, Introduction to the Physics of Landslides (Springer Verlag, Berlin, 2011)Google Scholar
  33. 33.
    G. Laskar, M. Gastineau, F. Joutel, P. Levrard, A. Correia, Icarus 170, 343 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    F.V. De Blasio, G.B. Crosta, P. Frattini, E. Valbuzzi, Characters of glacialism in Melas-Coprates Chasma and eastern Valles Marineris (Mars) as revealed by mass wasting, glacial, and periglacial deposits, submitted to Geomorphology (2017)Google Scholar
  35. 35.
    J. Imran, P. Harff, G. Parker, Comput. Geosci. 27, 717 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    L. Schilirò, F.V. De Blasio, C. Esposito, G. Scarascia Mugnozza, Earth Surf. Process. Landforms 40, 1847 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    F.V. De Blasio, H. Breien, A. Elverhøi, Earth Surf. Process. Landforms 36, 753 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    F.V. De Blasio, Rock Mech. Rock Eng. 41, 219 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    J. Locat, D. Demers, Can. Geotech. J. 25, 799 (1988)CrossRefGoogle Scholar
  40. 40.
    P. Coussot, Mudflow Rheology and Dynamics (Balkema, 1997)Google Scholar
  41. 41.
  42. 42.
    L. Eppelbaum, I. Kutasov, A. Pilchin, in Applied Geothermics, Lecture Notes in Earth System Sciences (Springer-Verlag, Berlin, Heidelberg, 2014) DOI: 10.1007/978-3-642-34023-9_2Google Scholar
  43. 43.
    F.V. De Blasio, Earth Planet. Sci. Lett. 312, 126 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    R. Smoluchowski, Science 159, 1348 (1968)ADSCrossRefGoogle Scholar
  45. 45.
    S.M. Clifford, D. Hillel, J. Geophys. Res. 88, 2456 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Fabio Vittorio De Blasio
    • 1
  • Giovanni Battista Crosta
    • 1
  1. 1.Department of Earth and Environmental SciencesUniversità degli Studi di Milano BicoccaMilanoItaly

Personalised recommendations