Modelling Martian landslides: dynamics, velocity, and paleoenvironmental implications

Abstract.

Landslides on Mars exhibit features such as steep collapse, extreme deposit thinning, and long runout. We study the flow dynamics of Martian landslides particularly in Valles Marineris, where landslides are among the largest and longest. Firstly, we observe that landslides in Valles Marineris share a series of features with terrestrial landslides fallen onto glaciers. The presence of suspected glacial and periglacial morphologies from the same areas of Valles Marineris, and the results of remote sensing measurements suggest the presence of ice under the soil and into the rock slopes. Thus, we explore with numerical simulation the possibility that such landslides have been lubricated by ice. To establish a plausible rheological model for these landslides, we introduce two possible scenarios. One scenario assumes ice only at the base of the landslide, the other inside the rock-soil. A numerical model is extended here to include ice in these two settings, and the effect of lateral widening of the landslide. Only if the presence of ice is included in the calculations, do results reproduce reasonably well both the vertical collapse of landslide material in the scarp area, and the extreme thinning and runout in the distal area, which are evident characteristics of large landslides in Valles Marineris. The calculated velocity of landslides (often well in excess of 100 m/s and up to 200 m/s at peak) compares well with velocity estimates based on the run-up of the landslides on mounds. We conclude that ice may have been an important medium of lubrication of landslides on Mars, even in equatorial areas like Valles Marineris.

This is a preview of subscription content, access via your institution.

References

  1. 1

    B.K. Lucchitta, J. Geophys. Res. 84, 8097 (1979)

    ADS  Article  Google Scholar 

  2. 2

    B.K. Lucchitta, Icarus 72, 411 (1987)

    ADS  Article  Google Scholar 

  3. 3

    P.J. Shaller, Analysis and implications of large Martian and terrestrial landslides, PhD Thesis, California Institute of Technology, Pasadena (1991)

  4. 4

    C. Quantin, P. Allemand, C. Delacourt, Planet. Space Sci. 52, 1011 (2004)

    ADS  Article  Google Scholar 

  5. 5

    M.H.K. Bulmer, in Landslides: Types, Mechanisms and Modelling, edited by J.J. Clague, D. Stead (Cambridge University Press, Cambridge, 2012) pp. 393--408

  6. 6

    O. Debniak, O. Kromuszczyńska, in 47th LPSC Conference (2016) paper 1890

  7. 7

    M.T. Brunetti, F. Guzzetti, M. Cardinali, F. Fiorucci, M. Santangelo P. Mancinelli, G. Komatsu, L. Borselli, Earth Planet. Sci. Lett. 405, 156 (2014)

    ADS  Article  Google Scholar 

  8. 8

    G.B. Crosta P. Frattini, F.V. De Blasio, E. Valbuzzi, Introducing a new large inventory of Martian landslides, submitted to Earth Space Sci. (2017)

  9. 9

    K.P. Harrison, R.E. Grimm, Icarus 163, 347 (2003)

    ADS  Article  Google Scholar 

  10. 10

    V. Soukhovitskaya, M. Manga, Icarus 180, 348 (2006)

    ADS  Article  Google Scholar 

  11. 11

    M.H. Bulmer, B.A. Zimmerman, Geophys. Res. Lett. 32, L06201 (2005)

    ADS  Article  Google Scholar 

  12. 12

    A. Lucas, A. Mangeney, Geophys. Res. Lett. 34, L10201 (2007)

    ADS  Article  Google Scholar 

  13. 13

    F.V. De Blasio, Planet. Space Sci. 59, 1384 (2011)

    ADS  Article  Google Scholar 

  14. 14

    G.B. Crosta, F.V. De Blasio, P. Frattini, Global scale analysis of Martian landslide mobility and paleoenvironmental clues, submitted to J. Geophys. Res - Planets (2017)

  15. 15

    R.A. Schulz, Geophys. Res. Lett. 29, 38-1 (2002)

    ADS  Article  Google Scholar 

  16. 16

    F. Bigot-Cormier, D.R. Montgomery, Earth Planet. Sci. Lett. 260, 179 (2007)

    ADS  Article  Google Scholar 

  17. 17

    G.B. Crosta, S. Utili, F.V. De Blasio, R. Castellanza, Earth Planet. Sci. Lett. 388, 329 (2014)

    ADS  Article  Google Scholar 

  18. 18

    B.K. Lucchitta, A.S. McEwen, G.D. Clow, P.E. Geissler, R.B. Singer, R.A. Schultz, S.W. Squyres, The canyon system on Mars, in Mars, edited by H.H. Kiefer (University of Arizona Press, 1992) pp. 453-492

  19. 19

    C. Quantin, P. Allemand, N. Mangold, C. Delacourt, Icarus 172, 555 (2004)

    ADS  Article  Google Scholar 

  20. 20

    P. Mazzanti, F.V. De Blasio, C. Di Bastiano, F. Bozzano, Earth Planets Space 68, 1 (2016)

    ADS  Article  Google Scholar 

  21. 21

    G. Laskar, M. Gastineau, F. Joutel, P. Levrard, A. Correia, Icarus 170, 343 (2004)

    ADS  Article  Google Scholar 

  22. 22

    V.R. Baker, Nature 412, 228 (2001)

    ADS  Article  Google Scholar 

  23. 23

    R.L. Shreve, Science 154, 1639 (1996)

    ADS  Article  Google Scholar 

  24. 24

    A.S. Post, Effects on glaciers, in The Great Alaska Earthquake of 1964, Vol. 3: Hydrology (National Academy of Sciences, Washington, U.S.A, 1968) part A, pp. 266--308

  25. 25

    D. Schneider et al., Earth Surf. Process. Landforms 36, 1948 (2011)

    ADS  Article  Google Scholar 

  26. 26

    R. Sosio, G.B. Crosta, J.H. Chen, O. Hungr, Quat. Sci. Rev. 47, 23 (2012)

    ADS  Article  Google Scholar 

  27. 27

    F.V. De Blasio, Geomorphology 213, 88 (2014)

    ADS  Article  Google Scholar 

  28. 28

    A. Dufresne, T.R. Davies, Geomorphology 105, 171 (2009)

    ADS  Article  Google Scholar 

  29. 29

    M. Gourronc, O. Bourgeois, D. Mège, S. Pochat, B. Bultel, M. Massé, L. Le Deit, S. Le Mouélic, D. Mercier, Geomorphology 204, 235 (2014)

    ADS  Article  Google Scholar 

  30. 30

    A.S. McEwen, Geology 17, 1111 (1989)

    ADS  Article  Google Scholar 

  31. 31

    T. Erismann, G. Abele, Dynamics of Rockslides and Rockfalls (Springer Verlag, Berlin, 2001)

  32. 32

    F.V. De Blasio, Introduction to the Physics of Landslides (Springer Verlag, Berlin, 2011)

  33. 33

    G. Laskar, M. Gastineau, F. Joutel, P. Levrard, A. Correia, Icarus 170, 343 (2004)

    ADS  Article  Google Scholar 

  34. 34

    F.V. De Blasio, G.B. Crosta, P. Frattini, E. Valbuzzi, Characters of glacialism in Melas-Coprates Chasma and eastern Valles Marineris (Mars) as revealed by mass wasting, glacial, and periglacial deposits, submitted to Geomorphology (2017)

  35. 35

    J. Imran, P. Harff, G. Parker, Comput. Geosci. 27, 717 (2001)

    ADS  Article  Google Scholar 

  36. 36

    L. Schilirò, F.V. De Blasio, C. Esposito, G. Scarascia Mugnozza, Earth Surf. Process. Landforms 40, 1847 (2015)

    ADS  Article  Google Scholar 

  37. 37

    F.V. De Blasio, H. Breien, A. Elverhøi, Earth Surf. Process. Landforms 36, 753 (2011)

    ADS  Article  Google Scholar 

  38. 38

    F.V. De Blasio, Rock Mech. Rock Eng. 41, 219 (2007)

    ADS  Article  Google Scholar 

  39. 39

    J. Locat, D. Demers, Can. Geotech. J. 25, 799 (1988)

    Article  Google Scholar 

  40. 40

    P. Coussot, Mudflow Rheology and Dynamics (Balkema, 1997)

  41. 41

    http://www.its.caltech.edu/~atomic/snowcrystals/ice/ice.htm

  42. 42

    L. Eppelbaum, I. Kutasov, A. Pilchin, in Applied Geothermics, Lecture Notes in Earth System Sciences (Springer-Verlag, Berlin, Heidelberg, 2014) DOI: 10.1007/978-3-642-34023-9_2

  43. 43

    F.V. De Blasio, Earth Planet. Sci. Lett. 312, 126 (2011)

    ADS  Article  Google Scholar 

  44. 44

    R. Smoluchowski, Science 159, 1348 (1968)

    ADS  Article  Google Scholar 

  45. 45

    S.M. Clifford, D. Hillel, J. Geophys. Res. 88, 2456 (1983)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabio Vittorio De Blasio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Blasio, F.V., Crosta, G.B. Modelling Martian landslides: dynamics, velocity, and paleoenvironmental implications. Eur. Phys. J. Plus 132, 468 (2017). https://doi.org/10.1140/epjp/i2017-11727-x

Download citation