Unsteady free convection flow of viscous fluids with analytical results by employing time-fractional Caputo-Fabrizio derivative (without singular kernel)

Regular Article

Abstract.

This article introduces a theoretical study for unsteady free convection flow of an incompressible viscous fluid. The fluid flows near an isothermal vertical plate. The plate has a translational motion with time-dependent velocity. The equations governing the fluid flow are expressed in fractional differential equations by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Explicit solutions for velocity, temperature and solute concentration are obtained by applying the Laplace transform technique. As the fractional parameter approaches to one, solutions for the ordinary fluid model are extracted from the general solutions of the fractional model. The results showed that, for the fractional model, the obtained solutions for velocity, temperature and concentration exhibit stationary jumps discontinuity across the plane at \( t=0\) , while the solutions are continuous functions in the case of the ordinary model. Finally, numerical results for flow features at small-time are illustrated through graphs for various pertinent parameters.

References

  1. 1.
    P.S. Ghoshdastidar, Heat Transfer (Oxford University Press, 2004)Google Scholar
  2. 2.
    V.M. Soundalgekar, S.K. Gupta, Acta Ciencia Indica Vim 3, 138 (1980)Google Scholar
  3. 3.
    A.K. Singh, N. Kumar, Astrophys. Space Sci. 98, 245 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    J.H. Merkin, J. Eng. Math. 19, 189 (1985)CrossRefGoogle Scholar
  5. 5.
    G.S. Seth, B. Kumbhakar, S. Sarkar, Rend. Circ. Mat. Palermo (2016) https://doi.org/10.1007/s12215-016-0250-1
  6. 6.
    N.C. Rosca, A.V. Rosca, I. Pop, Comput. Math. Appl. 71, 1679 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C.J. Toki, J.N. Tokis, Z. Angew. Math. Mech. 87, 4 (2007)CrossRefGoogle Scholar
  8. 8.
    C.J. Toki, J. Appl. Mech. 76, 014503 (2008)CrossRefGoogle Scholar
  9. 9.
    V. Rajesh, Int. J. Appl. Math. Mech. 6, 1 (2010)Google Scholar
  10. 10.
    M. Narahari, A. Ishak, J. Appl. Sci. 11, 1096 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    M. Narahari, M.Y. Nayan, Turkish J. Eng. Env. Sci. 35, 187 (2011)Google Scholar
  12. 12.
    Samiulhaq et al., J. Phys. Soc. Jpn. 81, 044401 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Samiulhaq et al., Z. Naturforsch. 67a, 572 (2012)ADSGoogle Scholar
  14. 14.
    M. Narahari, L. Debnath, Z. Angew. Math. Mech. 93, 38 (2013)CrossRefGoogle Scholar
  15. 15.
    M.A. Imran et al., J. Mol. Liq. 229, 67 (2017)CrossRefGoogle Scholar
  16. 16.
    N.A. Shah, D. Vieru, C. Fetecau, J. Magn. & Magn. Mater. 409, 10 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Imran, Neural Comput. & Appl. (2016) https://doi.org/10.1007/s00521-016-2741-6
  18. 18.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)Google Scholar
  19. 19.
    A. Atangana, Appl. Math. Comput. 273, 948 (2016)MathSciNetGoogle Scholar
  20. 20.
    M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Cortell, J. King Saud Univ. Sci. 26, 161 (2014)CrossRefGoogle Scholar
  22. 22.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integral, Series and Products, 8 ed. (Academic Press, USA, 2014)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Abdus Salam School of Mathematical SciencesGC UniversityLahorePakistan
  2. 2.Department of MathematicsGC UniversityLahorePakistan

Personalised recommendations