The third-order perturbed Korteweg-de Vries equation for shallow water waves with a non-flat bottom

Regular Article

Abstract.

The goal of this work is to investigate, analytically and numerically, the dynamics of gravity water waves with the effects of the small surface tension and the bottom topography taken into account. Using a third-order perturbative approach of the Boussinesq equation, we obtain a new third-order perturbed Korteweg-de Vries (KdV) equation which includes nonlinear, dispersive, nonlocal and mixed nonlinear-dispersive terms, describing shallow water waves with a non-flat bottom and the surface tension. We show by numerical simulations, for various bottom shapes, that this new third-order perturbed KdV equation can support the propagation of solitary waves, whose profiles strongly depend on the surface tension. In particular, we show that the instability observed in the numerical simulation can be suppressed by the inclusion of small surface tension.

References

  1. 1.
    D.G. Korteweg, G. de Vries, Philos. Mag. 39, 422 (1895)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.K. Hunter, J. Scherule, Physica D 32, 253 (1988)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1999) reprint of the (1974) original, a Wiley-Interscience PublicationGoogle Scholar
  4. 4.
    M. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, in SIAM Studies in Applied Mathematics, Vol. 4 (SIAM, Philadelphia, 1981)Google Scholar
  5. 5.
    A.C. Newell, Solitons in Mathematics and Physics, in CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 48 (SIAM, Philadelphia, PA, 1985)Google Scholar
  6. 6.
    R.S. Johnson, J. Nonlinear Math. Phys. 10, 72 (2003)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    T. Sakuma, Y. Kawanami, Phys. Rev. B 29, 869 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    X.-F. Panga, J. Phys. B 10, 415 (1999)ADSGoogle Scholar
  9. 9.
    H.-Y. Hao, H.J. Maris, Phys. Rev. B 64, 064302 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    S. Poornakala, A. Das, P.K. Kaw, A. Sen, Z.M. Sheng, Y. Sentoku, K. Mima, K. Nishikawa, Phys. Plasmas 9, 3802 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Apel, J.R. Holbrook, A.K. Liu, J.J. Tsai, J. Phys. Oceanogr. 15, 1625 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    A.K. Liu, Y.S. Chang, M.-K. Hsu, N.K. Liang, J. Geophys. Res. 103, 7995 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    M.H. Orr, P.C. Mignerey, J. Geophys. Res. 108, 3064 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    T.C. Kofane, B. Michaux, M. Remoissenet, J. Phys. C: Solid State Phys. 21, 1395 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    W. Duan, B. Wang, R. Wei, Phys. Rev. E 55, 1773 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    T.J. Pedley, The Fluid Mechanics of Large Blood Vessels (Cambridge University Press, Cambridge, 1980)Google Scholar
  17. 17.
    N.J. Zabusky, M.D. Krustal, Phys. Rev. Lett. 15, 6 (1965)CrossRefGoogle Scholar
  18. 18.
    D.A. McDonald, Blood Flow in Arteries (Arnold, London, 1974)Google Scholar
  19. 19.
    G.B. Whitham, Proc. R. Soc. London A 299, 6 (1967)ADSCrossRefGoogle Scholar
  20. 20.
    A. Biswas, Appl. Math. Lett. 22, 208 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    F. Chardard, Stabilité des Ondes Solitaires, PhD Thesis (2009)Google Scholar
  22. 22.
    T. Kawahara, J. Phys. Soc. Jpn. 33, 260 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    T.B. Benjamin et al., Philos. Trans. R. Soc. London Ser. A 272, 47 (1972)ADSCrossRefGoogle Scholar
  24. 24.
    A. Jeffrey, Z. Angew. Math. Mech. 58, 38 (1978)MathSciNetGoogle Scholar
  25. 25.
    R.I. Joseph, R. Egri, Phys. Lett. A 61, 429 (1977)ADSCrossRefGoogle Scholar
  26. 26.
    C.C. Mei, B. Le Méhauté, J. Geophys. Res. 71, 393 (1966)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    D.H. Peregrine, J. Fluid Mech. 27, 815 (1967)ADSCrossRefGoogle Scholar
  28. 28.
    O.S. Madsen, C.C. Mei, J. Fluid Mech. 39, 781 (1969)ADSCrossRefGoogle Scholar
  29. 29.
    T. Kakutani, J. Phys. Soc. Jpn. 30, 272 (1971)ADSCrossRefGoogle Scholar
  30. 30.
    R.S. Johnson, Proc. Camb. Philos. Soc. 73, 183 (1973)ADSCrossRefGoogle Scholar
  31. 31.
    R.S. Johnson, J. Fluid Mech. 54, 81 (1972)ADSCrossRefGoogle Scholar
  32. 32.
    H.-H. Dai, J. Phys. Soc. Jpn. 68, 1854 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    P.J. Olver, Phys. Lett. A 126, 501 (1988)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    E. Van Greosen, S.R. Pudjaprasetya, Wave Motion 18, 345 (1993)MathSciNetCrossRefGoogle Scholar
  35. 35.
    S.R. Pudjaprasetya, E. Van Greosen, Wave Motion 23, 23 (1996)MathSciNetCrossRefGoogle Scholar
  36. 36.
    W. Craig, P. Guyenne, D.P. Nicholls, C. Sulem, Proc. R. Soc. A 461, 839 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    R. Grimshaw, J. Fluid Mech. 42, 639 (1970)ADSCrossRefGoogle Scholar
  38. 38.
    R. Grimshaw, J. Fluid Mech. 46, 611 (1971)ADSCrossRefGoogle Scholar
  39. 39.
    E. Audusse, F. Brouchut, M.O. Bristeau, R. Klein, B. Perthame, Soc. Industr. Appl. Math. 25, 2050 (2004)Google Scholar
  40. 40.
    N. Thürey, U. Rüde, M. Stamminger, Animation of open water phenomena with coupled shallow water and free surface simulations, in ACM SIGGRAPH Symposium on Computer Animation (Eurographics Association, 2006)Google Scholar
  41. 41.
    T. Gallouet, J.M. Herard, N. Seguin, Comput. Fluids 32, 479 (2003)MathSciNetCrossRefGoogle Scholar
  42. 42.
    J.G. Zhou, D.M. Causon, D.M. Ingram, C.G. Mingham, Int. J. Numer. Methods Fluids 38, 769 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Xing, C. Wang Shu, J. Comput. Phys. 208, 206 (2005)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    B. Turan, K.H. Wang, J. Appl. Comput. Math. 3, 1 (2014)Google Scholar
  45. 45.
    R.H.J. Grimshaw, N.F. Smyth, J. Fluid Mech. 169, 429 (1986)ADSCrossRefGoogle Scholar
  46. 46.
    N.F. Smyth, Proc. R. Soc. London A 409, 79 (1987)ADSCrossRefGoogle Scholar
  47. 47.
    A.M. Kamchatnov, Y.-H. Kuo, T.-C. Lin, T.-L. Horng, S.-C. Gou, R. Clift, G.A. El, R.H.J. Grimshaw, Phys. Rev. E 86, 036605 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    A.E. Green, P.M. Naghdi, J. Fluid Mech. 78, 237 (1976)ADSCrossRefGoogle Scholar
  49. 49.
    B.T. Nadiga, L.G. Margolin, P.K. Smolarkiewicz, Phys. Fluids 8, 2066 (1996)ADSCrossRefGoogle Scholar
  50. 50.
    J.W. Kim, K.J. Bai, R.C. Ertekin, W.C. Webster, J. Eng. Math. 40, 17 (2001)CrossRefGoogle Scholar
  51. 51.
    A. Constantin, J. Fluid Mech. 740, 17 (2014)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    H. Aspe, M.C. Depassier, Phys. Rev. A 41, 6 (1990)CrossRefGoogle Scholar
  53. 53.
    H. Guo Xiang, M.G. Velarde, Commun. Theor. Phys. 34, 321 (2000)CrossRefGoogle Scholar
  54. 54.
    H.R. Dullin, G.A. Gottwald, D.D. Holm, Fluid Dyn. Res. 33, 73 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    G.I. Burde, Commun. Nonlinear Sci. Numer. Simul. 16, 1314 (2011)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    G.I. Burde, A. Sergyeyev, J. Phys. A: Math. Theor. 46, 075501 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    A. Karczewska, P. Rozmej, E. Infeld, Phys. Rev. E 90, 012907 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    J.K. Hunter, J. Scheurle, Physica D 32, 253 (1988)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    A. Karasu-Kalkani, A. Karsau, A. Sakovich, S. Sarkovich, R. Turhan, J. Math. Phys. 49, 073516 (2008)ADSMathSciNetCrossRefGoogle Scholar
  60. 60.
    T.R. Marchant, N.F. Symth, J. Fluid Mech. 221, 236 (1990)CrossRefGoogle Scholar
  61. 61.
    M. Fokou, T.C. Kofané, A. Mohamadou, E. Yomba, Nonlinear Dyn. 83, 2461 (2016)CrossRefGoogle Scholar
  62. 62.
    T.R. Marchant, Appl. Math. 109, 1 (2002)Google Scholar
  63. 63.
    A. Karczewska, P. Rozmej, L. Rutkowski, Phys. Scr. 89, 054026 (2014)ADSCrossRefGoogle Scholar
  64. 64.
    C.J. Amick, J.F. Toland, Philos. Trans. R. Soc. London 303, 633 (1981)ADSCrossRefGoogle Scholar
  65. 65.
    C.J. Amick, K. Kirchgssner, Solitary water-waves in the presence of surface tension, Vol. 4 (Springer, New York, 1987)Google Scholar
  66. 66.
    C.J. Amick, K. Kirchgssner, A global theory of solitary water-waves in the presence of surface tension, Vol. 105 (Springer, 1989)Google Scholar
  67. 67.
    M. Zhao, B. Teng, L. Cheng, Ocean Eng. 31, 2047 (2004)CrossRefGoogle Scholar
  68. 68.
    D.E. Mitsosakis, J. Math. Comput. Simul. 80, 860 (2009)CrossRefGoogle Scholar
  69. 69.
    C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)ADSCrossRefGoogle Scholar
  70. 70.
    N.J. Zabusky, Phys. Rev. 168, 124 (1968)ADSCrossRefGoogle Scholar
  71. 71.
    N.J. Zabusky, C.J. Galvin, J. Fluid Mech. 47, 811 (1971)ADSCrossRefGoogle Scholar
  72. 72.
    W.K. Melville, K.R. Helfrich, J. Fluid Mech. 178, 31 (1987)ADSCrossRefGoogle Scholar
  73. 73.
    C.Y. Lee, R.C. Beardsley, J. Geophys. Res. 7, 338 (1974)Google Scholar
  74. 74.
    P.G. Baines, J. Fluid Mech. 140, 127 (1984)ADSCrossRefGoogle Scholar
  75. 75.
    K.R. Helfrich, W.K. Melville, Annu. Rev. Fluid Mech. 38, 395 (2006)ADSCrossRefGoogle Scholar
  76. 76.
    A.T. Ippen, G. Kulin, MIT Hydrodynamics Laboratory Tech. Report, No. 15 (1955)Google Scholar
  77. 77.
    J.L. Hammack, J. Fluid Mech. 60, 769 (1973)ADSCrossRefGoogle Scholar
  78. 78.
    J.L. Hammack, H. Segur, J. Fluid Mech. 65, 289 (1974)ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    J.L. Hammack, H. Segur, J. Fluid Mech. 84, 337 (1978)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. Fokou
    • 1
    • 2
  • T. C. Kofané
    • 1
    • 2
  • A. Mohamadou
    • 3
    • 2
  • E. Yomba
    • 4
  1. 1.Laboratory of Mechanics, Department of Physics, Faculty of ScienceUniversity of Yaounde IYaoundéCameroon
  2. 2.Centre d’Excellence Africain en Technologies de l’Information et de la Communication (CETIC)University of Yaounde IYaoundéCameroon
  3. 3.Laboratory of Mechanics, Department of Physics, Faculty of ScienceUniversity of MarouaMarouaCameroon
  4. 4.Department of MathematicsCalifornia State University-NorthridgeNorthridgeUSA

Personalised recommendations