\( \kappa\) -deformed Dirac equation in crossed magnetic and electric fields

Regular Article

Abstract.

We obtain solutions of the \( (2+1)\) -dimensional \( \kappa\)-deformed Dirac equation in the presence of crossed magnetic and electric fields. It is shown that the \( \kappa\)-deformed Landau levels are modified in the presence of the electric field. Contraction of Landau levels has also been examined and it has been shown that the contraction depends on a critical magnetic field which is independent of the deformation parameter in first-order approximation.

References

  1. 1.
    J. Lukierski, A. Nowicki, H. Ruegg, Phys. Lett. B 293, 344 (1992)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Nowicki, E. Sorace, M. Tarlini, Phys. Lett. B 302, 419 (1993)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Giller et al., Mod. Phys. Lett. A 8, 3785 (1993)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    E. Celegnini, R. Giachetti, E. Sorace, M. Tarlini, J. Math. Phys. 32, 1155 (1991)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Celegnini, R. Giachetti, E. Sorace, M. Tarlini, J. Math. Phys. 32, 1159 (1991)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    L.C. Biedenharn, B. Mueller, M. Tarlini, Phys. Lett. B 318, 613 (1993)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    P. Roy, R. Roychoudhury, Phys. Lett. B 339, 87 (1994)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P. Roy, R. Roychoudhury, Phys. Lett. B 359, 339 (1995)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Roy, R. Roychoudhury, Mod. Phys. Lett. A 10, 1969 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    F.M. Andrade, E.O. Silva, Phys. Lett. B 738, 44 (2014)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    F.M. Andrade, E.O. Silva, M.M. Ferreira, E.C. Rodrigues, Phys. Lett. B 731, 327 (2014)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    F.M. Andrade, E.O. Silva, D. Assafrão, C. Filgueiras, EPL 116, 31002 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    E. Harikumar, A.K. Kapoor, R. Verma, Phys. Rev. D 86, 045022 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    E. Harikumar, T. Jurić, S. Meljanac, Phys. Rev. D 84, 085020 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    V. Canuto, C. Chiuderi, Lett. Nuovo Cimento 2, 223 (1969)ADSCrossRefGoogle Scholar
  16. 16.
    L. Lam, Lett. Nuovo Cimento 3, 292 (1970)CrossRefGoogle Scholar
  17. 17.
    V. Lukose, R. Shankar, G. Baskaran, Phys. Rev. Lett. 98, 116802 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    N.M.R. Peres, E.V. Castro, J. Phys.: Condens. Matter. 19, 406231 (2007)Google Scholar
  19. 19.
    D. Nath, P. Roy, Ann. Phys. 351, 13 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    S. Flügge, Practical Quantum Mechanics (Springer-Verlag, 1999)Google Scholar
  21. 21.
    G. Barton, Ann. Phys. 166, 322 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    D.M. Heim et al., Phys. Lett. A 377, 1822 (2013)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsVivekananda CollegeKolkataIndia
  2. 2.Physics & Applied Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations