Skip to main content
Log in

Modelling and simulation of temperature and concentration dispersion in a couple stress nanofluid flow through stenotic tapered arteries

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A couple stress fluid model with the suspension of silver nanoparticles is proposed in order to investigate theoretically the natural convection of temperature and concentration. In particular, the flow is considered in an artery with an obstruction wherein the rheology of blood is taken as a couple stress fluid. The effects of the permeability of the stenosis and the treatment procedure involving a catheter are also considered in the model. The obtained non-linear momentum, temperature and concentration equations are solved using the homotopy perturbation method. Nanoparticles and the two viscosities of the couple stress fluid seem to play a significant role in the flow regime. The pressure drop, flow rate, resistance to the fluid flow and shear stress are computed and their effects are analyzed with respect to various fluids and geometric parameters. Convergence of the temperature and its dependency on the degree of deformation is effectively depicted. It is observed that the Nusselt number increases as the volume fraction increases. Hence magnification of molecular thermal dispersion can be achieved by increasing the nanoparticle concentration. It is also observed that concentration dispersion is greater for severe stenosis and it is maximum at the first extrema. The secondary flow of the axial velocity in the stenotic region is observed and is asymmetric in the tapered artery. The obtained results can be utilized in understanding the increase in heat transfer and enhancement of mass dispersion, which could be used for drug delivery in the treatment of stenotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.N. Krishnan, Indian Heart J. 64, 364 (2012)

    Article  Google Scholar 

  2. Rajeev Gupta, Indu Mohan, Jagat Narula, Ann. Global Health 82, 307 (2016)

    Article  Google Scholar 

  3. M.A. Xenos, Proc. R. Soc. A 473, 20160774 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. George Bugliarello, Juan Sevilla, Biorheology 7, 85 (1970)

    Google Scholar 

  5. H.L. Goldsmith, R. Skalak, Ann. Rev. Fluid Mech. 7, 213 (1975)

    Article  ADS  Google Scholar 

  6. Jyotirmoy Rana, P.V.S.N. Murthy, Proc. R. Soc. A 472, 20160294 (2016)

    Article  Google Scholar 

  7. P. Kumar Mandal, Santabrata Chakravarty, Arabinda Mandal, Int. J. Comput. Math. 84, 1059 (2007)

    Article  MathSciNet  Google Scholar 

  8. Noreen Sher Akbar, Comput. Methods Programs Biomed. 132, 45 (2016)

    Article  Google Scholar 

  9. Noreen Sher Akbar, Int. J. Biomath. 8, 1550075 (2015)

    Article  MathSciNet  Google Scholar 

  10. K.C. Valanis, C.T. Sun, Biorheology 6, 85 (1969)

    Google Scholar 

  11. Aleksander S. Popel, S.A. Regirer, P.I. Usick, Biorheology 11, 427 (1974)

    Google Scholar 

  12. Vijay Kumar Stokes, Phys. Fluids 9, 1709 (1966)

    Article  Google Scholar 

  13. D. Srinivasacharya, D. Srikanth, C. R. Mec. 336, 820 (2008)

    Article  ADS  Google Scholar 

  14. D. Srinivasacharya, D. Srikanth, Arch. Appl. Mech. 78, 251 (2008)

    Article  ADS  Google Scholar 

  15. J.V. Ramana Reddy, D. Srikanth, S.V.S.S.N.V.G. Krishna Murthy, Eur. J. Mech. B 48, 236 (2014)

    Article  Google Scholar 

  16. J.V.R. Reddy, D. Srikanth, S.K. Murthy, Appl. Math. Mech. 35, 947 (2014)

    Article  Google Scholar 

  17. Jing Fan, Liqiu Wang, J. Heat Transf. 133, 040801 (2011)

    Article  Google Scholar 

  18. Sarit Kumar Das, Stephen U.S. Choi, Hrishikesh E. Patel, Heat Transf. Eng. 27, 3 (2006)

    ADS  Google Scholar 

  19. Wenhua Yu, David M. France, Jules L. Routbort, Stephen U.S. Choi, Heat Transf. Eng. 29, 432 (2008)

    Article  ADS  Google Scholar 

  20. Noreen Sher Akbar, Physica E 72, 70 (2015)

    Article  Google Scholar 

  21. Noreen Sher Akbar, IEEE Trans. Nanobiosci. 14, 780 (2015)

    Article  Google Scholar 

  22. A. Aziz, Tsung Yen Na, Perturbation Methods in Heat Transfer (Hemisphere Publishing Corp., Washington, 1984)

  23. Robin Stanley Johnson, Singular Perturbation Theory: Mathematical and Analytical Techniques with Applications to Engineering (Springer Science & Business Media, 2006)

  24. G.L. Liu, New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique, in Proceeding of the 7th Conference of the Modern Mathematics and Mechanics, Shanghai, September 1997 (Scientific Research, 1997) pp. 47-53

  25. Shijun Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method (CRC Press, 2003)

  26. Ji-Huan He, Appl. Math. Comput. 114, 115 (2000)

    MathSciNet  Google Scholar 

  27. Ji-Huan He, Appl. Math. Comput. 156, 527 (2004)

    MathSciNet  Google Scholar 

  28. Thanaa Elnaqeeb, Khaled S. Mekheimer, Felwah Alghamdi, Math. Biosci. 282, 135 (2016)

    Article  MathSciNet  Google Scholar 

  29. Noreen Sher Akbar, Int. J. Biomath. 8, 1550045 (2015)

    Article  MathSciNet  Google Scholar 

  30. Robin Fåhraeus, Physiol. Rev. 9, 241 (1929)

    Google Scholar 

  31. Albert Einstein, Ann. Phys. 324, 289 (1906)

    Article  Google Scholar 

  32. G.K. Batchelor, J. Fluid Mech. 83, 97 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  33. Noreen Sher Akbar, M.T. Mustafa, AIP Adv. 5, 077102 (2015)

    Article  ADS  Google Scholar 

  34. M. Hatami, J. Hatami, Davood Domiri Ganji, Comput. Methods Programs Biomed. 113, 632 (2014)

    Article  Google Scholar 

  35. Bock Choon Pak, Young I. Cho, Exp. Heat Transf. Int. J. 11, 151 (1998)

    Article  ADS  Google Scholar 

  36. H.C. Brinkman, J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  37. L. Godson, B. Raja, D. Mohan Lal, S. Wongwises, Exp. Heat Transf. 23, 317 (2010)

    Article  ADS  Google Scholar 

  38. R.L. Hamilton, O.K. Crosser, Ind. Eng. Chem. Fundam. 1, 187 (1962)

    Article  Google Scholar 

  39. J.V. Reddy, D. Srikanth, Appl. Bion. Biomech. 2015, 174387 (2015)

    Google Scholar 

  40. Noreen Sher Akbar, S. Nadeem, IEEE Trans. Nanobiosci. 12, 332 (2013)

    Article  Google Scholar 

  41. P. Brunn, Rheol. Acta 14, 1039 (1975)

    Article  Google Scholar 

  42. Gordon S. Beavers, Daniel D. Joseph, J. Fluid Mech. 30, 197 (1967)

    Article  ADS  Google Scholar 

  43. Ji-Huan He, Comput. Methods Appl. Mech. Eng. 178, 257 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Srikanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramana Reddy, J.V., Srikanth, D. & Das, S.K. Modelling and simulation of temperature and concentration dispersion in a couple stress nanofluid flow through stenotic tapered arteries. Eur. Phys. J. Plus 132, 365 (2017). https://doi.org/10.1140/epjp/i2017-11643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11643-1

Navigation