Dufour and Soret effect on heat and mass transfer with radiative heat flux in a viscous liquid over a rotating disk

Regular Article
  • 16 Downloads

Abstract.

Free surface flow of an incompressible viscous fluid over a porous rotating disk with heat and mass transfer with radiative heat flux is studied. The effect of the natural parameters such as Dufour number, Soret number, Prandtl number, radiation parameter, Suction parameter and Schmidt number on the fluid properties are determined and shown graphically. The corresponding skin friction coefficient, the Nusselt number and the Sherwood number are also calculated and displayed in tables showing the effects of various parameters on velocity profile. Individual averaged square residual errors as well as optimal values of converges control parameterconvergence control parameters are also discussed in detail. It is found that Dufour and radiation effects cause reductions in the fluid temperature. The effect of suction decreases the velocities, temperature and concentration profiles significantly in boundary layer. The total averaged squared errors and average squared residual errors are further reduced as the order of approximation is increased. This analysis was performed by means of the Homotopy Analysis Method (HAM) and for validity it is compared with the results of BVP4C numerical routine.

References

  1. 1.
    T. Von Kármán, Z. Angew. Math. Mech. 1, 233 (1921)CrossRefGoogle Scholar
  2. 2.
    W.G. Cochran, Proc. Camb. Philos. Soc. 30, 365 (1934)ADSCrossRefGoogle Scholar
  3. 3.
    E.R. Benton, J. Fluid Mech. 24, 781 (1966)ADSCrossRefGoogle Scholar
  4. 4.
    K. Millsaps, K. Polhausen, J. Aeronaut. Sci. 19, 120 (1952)MathSciNetGoogle Scholar
  5. 5.
    E.M. Sparrow, J.L. Gregg, J. Heat Transf. ASME 81, 249 (1959)Google Scholar
  6. 6.
    H.K. Kuiken, J. Fluid Mech. 47, 789 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    H.A. Attia, Int. Commun. Heat Mass Transfer 29, 653 (2002)CrossRefGoogle Scholar
  8. 8.
    H.I. Andersson, E. de Korte, Eur. J. Mech. B 21, 317 (2002)CrossRefGoogle Scholar
  9. 9.
    M. Turkyilmazoglu, Mediterr. J. Math. 13, 4019 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M.M. Ali, T.S. Chen, B.F. Armaly, AIAA J. 22, 179 (1984)CrossRefGoogle Scholar
  11. 11.
    T.M.A. El-Mistikawy, H.A. Attia, A.A. Megahed, The rotating disk flow in the presence of a weak magnetic field, in Proceedings of the 4th Conference on Theoretical and Applied Mechanics, Cairo, Egypt (Hindawi Publishing, 1990) pp. 69--82Google Scholar
  12. 12.
    J. Rath, M.O.P. Iyengar, Proc. Natl. Inst. Sci. India A 35, 180 (1969)Google Scholar
  13. 13.
    K.T. Yang, J. Appl. Mech. 25, 421 (1958)Google Scholar
  14. 14.
    C.Y. Wang, J. Appl. Mech. 23, 579 (1976)CrossRefGoogle Scholar
  15. 15.
    S. Uchida, H. Aoki, J. Fluid. Mech. 82, 371 (1977)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    L.T. Watson, C.Y. Wang, Phys. Fluid 22, 2267 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    E.M. Sparrow, G.S. Beavers, L.Y. Hung, Int. J. Heat Mass Transfer 14, 993 (1971)CrossRefGoogle Scholar
  18. 18.
    Kh. Abdul Maleque, J. Heat Transfer 131, 082001 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Afify Ahmed, Commun. Nonlinear Sci. Numer. Simul. 14, 2202 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Beg Anwar, A.Y. Bakier, V.R. Prasad, Comput. Mater. Sci. 46, 57 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Turkyilmazoglu, Phys. Fluids 28, 043102 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    R. Siegel, J.R. Howell, Thermal Radiation Transfer, 3rd ed. (Hemisphere, New York, 1992)Google Scholar
  23. 23.
    M.F. Modest, Radiative Heat Transfer, 2nd ed. (Academic Press, New York, 2003)Google Scholar
  24. 24.
    T. Hayat, M. Nawaz, M. Sajid, S. Asghar, Comput. Math. Appl. 58, 369 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M.S. Alam, S.M.C. Hossain, M.M. Rahman, Meccanica 49, 2439 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    I.H. Lin, K.L. Hsiao, Am. J. Heat Mass Transfer 2, 127 (2015)CrossRefGoogle Scholar
  27. 27.
    M.S. Alam, Nayan K. Podder, M.M. Rahman, Vajravelu, Am. J. Heat Mass Transfer 3, 165 (2015)Google Scholar
  28. 28.
    M. Turkyilmazoglu, J. Heat Transfer 131, 691 (2009)CrossRefGoogle Scholar
  29. 29.
    S.P. Anjali Devi, R. Uma Devi, Commun. Nonlinear Sci. Numer. Simul. 16, 1917 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    M.H. Abolbashari, N. Freidoonimehr, F. Nazari, M.M. Rashidi, Powder Technol. 267, 256 (2014)CrossRefGoogle Scholar
  31. 31.
    S.J. Liao, Commun. Nonlinear Sci. Numer. Simul. 15, 2003 (2010)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
  33. 33.
    M. Turkyilmazoglu, Phys. Scr. 86, 015301 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    M. Turkyilmazoglu, Filomat 30, 1633 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Basic Sciences and IslamiatUniversity of Engineering and TechnologyPeshawarPakistan

Personalised recommendations