Skip to main content
Log in

Dry unit weight of compacted soils prediction using GMDH-type neural network

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Dry unit weight ( \({\gamma}_d\) of soils is usually determined by in situ tests, such as rubber balloon, sand cone, nuclear density measurements, etc. The elastic wave method using compressional wave has been broadly used to determine various geotechnical parameters. In the present paper, the polynomial neural network (NN) is used to estimate the \({\gamma}_d\) of compacted soils indirectly depending on P -wave velocity ( \( V_p\) , moisture content ( \(\omega\) and plasticity index (PI as well as fine-grained particles (FC). Eight natural soil samples (88 data) were applied for developing a polynomial representation of model. To determine the performance of the proposed model, a comparison was carried out between the predicted and experimentally measured values. The results show that the developed GMDH-type NN has a great ability \((R^2=0.942)\) to predict the \({\gamma}_d\) of the compacted soils and is more efficient (53% to 73% improvement) than the previous reported methods. Finally, the derived model sensitivity analysis has been performed to evaluate the effect of each input variable on the proposed model output and shows that the P -wave velocity is the most influential parameter on the predicted \({\gamma}_d\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.P. Coduto, Geotechnical Engineering (Prentice Hall, New Jersey, 1998)

  2. R.R. Proctor, Eng. News Record 111, 245 (1933)

    Google Scholar 

  3. ASTM Standard D698, Standard test methods for laboratory compaction characteristics of soil using standard effort (ASTM International, West Conshohocken, PA, 2012) www.astm.org

  4. B.M. Das, Principles of Geotechnical Engineering, 7th edition (Cenage Learning, Stamford, CT, 2010)

  5. S. Altun, A.B. Goktepe, A. Sezer, Turk. J. Eng. Environ. Sci. 32, 201 (2008)

    Google Scholar 

  6. K. Terzaghi, R.B. Peck, G. Mesri, Soil Mechanics in Engineering Practice (John Wiley & Sons, 1996)

  7. S.K. Rout, Prediction of Relative Density of Sand with Particular Reference to Compaction Energy, Doctoral dissertation (2009)

  8. K. oković, D. Rakić, M. Ljubojev, Mining Metallur. Eng. Bor (2013) DOI:10.5937/mmeb1304001D

  9. N.S. Pandian, T.S. Nagaraj, M. Manoj, Geotechnique 47, 363 (1997)

    Article  Google Scholar 

  10. L.R. Blotz, C. Benson, G. Boutwell, J. Geotech. Geoenviron. Eng. 124, 907 (1998)

    Article  Google Scholar 

  11. Y. Gurtug, A. Sridharan, Soils Found. 44, 27 (2004)

    Article  Google Scholar 

  12. A. Sridharan, H.B. Nagaraj, Plastic Limit and Compaction Characteristics of Fine Grained Soils, in Proceedings of the Institution of Civil Engineers-Ground Improvement, Vol. 9(1) (ICE, 2005) pp. 17--22

  13. D.L. Matteo, F. Bigotti, R. Ricco, J. Geotech. Geoenviron. Eng. 135, 992 (2009)

    Article  Google Scholar 

  14. S. Noor, R. Chitra, M. Gupta, Int. J. Earth Sci. Eng. 4, 147 (2011)

    Google Scholar 

  15. K. Farooq, U. Khalid, H. Mujtaba, Arab. J. Sci. Eng. 41, 1319 (2016)

    Article  Google Scholar 

  16. M. Jesmani, A.N. Manesh, S.M.R. Hoseini, Electron. J. Geotech. Eng. 13, 1 (2008)

    Google Scholar 

  17. T.N. Singh, R. Kanchan, K. Saigal, A.K. Verma, J. Sci. Indust. Res. 63, 32 (2004)

    Google Scholar 

  18. S. Kahraman, Ultrasonics 46, 341 (2007)

    Article  Google Scholar 

  19. P.K. Sharma, T.N. Singh, Bull. Eng. Geol. Environ. 67, 17 (2008)

    Article  Google Scholar 

  20. P.K. Sharma, M. Khandelwal, T.N. Singh, Int. J. Earth Sci. 100, 189 (2011)

    Article  Google Scholar 

  21. K. Sarkar, V. Vishal, T.N. Singh, Geotech. Geol. Eng. 30, 469 (2012)

    Article  Google Scholar 

  22. H. Karakul, R. Ulusay, Rock Mech. Rock Eng. 46, 981 (2013)

    Article  ADS  Google Scholar 

  23. K. Diamantis, S. Bellas, G. Migiros, E. Gartzos, Geotech. Geol. Eng. 29, 1049 (2011)

    Article  Google Scholar 

  24. R. O'Driscoll, G. Stuart, G. Tuckwell, J. Sergeant, Near Surf. Geophys. 11, 671 (2013)

    Google Scholar 

  25. N.A. El Sayed, H. Abuseda, M.A. Kassab, J. Afr. Earth Sci. 111, 14 (2015)

    Article  ADS  Google Scholar 

  26. K. Nakagawa, K. Soga, J.K. Mitchell, J. Geotech. Eng. 122, 302 (1996)

    Article  Google Scholar 

  27. ASTM Standard D2845, Laboratory determination of pulse velocities and ultrasonic elastic constants of rock (ASTM International, West Conshohocken, PA, 2008) www.astm.org

  28. A.I. Sologyan, Sov. J. Nondestructive Test. 25, 480 (1990)

    Google Scholar 

  29. N. Yesiller, G. Inci, C.J. Miller, Ultrasonic testing for compacted clayey soils, in Advances in Unsaturated Geotechnics (2000) DOI:10.1061/40510(287)5

  30. G. Inci, N. Yesiller, T. Kagawa, Geotech. Testing J. 26, 125 (2003)

    Google Scholar 

  31. M. Fener, S. Kahraman, Y. Bay, O. Gunaydin, Can. Geotech. J. 42, 673 (2005)

    Article  Google Scholar 

  32. D.M. Weidinger, L. Ge, R.W. Stephenson, Ultrasonic Pulse Velocity Tests on Compacted Soil, in Characterization, Modeling, and Performance of Geomaterials (ASCE, 2009) pp. 150--155 DOI:10.1061/41041(348)22

  33. M. Christ, J.B. Park, Cold Regions Sci. Technol. 58, 136 (2009)

    Article  Google Scholar 

  34. Z. Khan, G. Cascante, M.H. El Naggar, Can. Geotech. J. 48, 1 (2011)

    Article  Google Scholar 

  35. M. Fawad, N.H. Mondol, J. Jahren, K. Bjørlykke, Geophys. Prospecting 59, 697 (2011)

    Article  ADS  Google Scholar 

  36. E. Kolay,T. Baser, Appl. Soft Comput. 18, 223 (2014)

    Article  Google Scholar 

  37. A. Ismail, D.S. Jeng, Eng. Appl. Artif. Intell. 24, 813 (2011)

    Article  Google Scholar 

  38. A. Ismail, D.S. Jeng, L.L. Zhang, Eng. Appl. Artif. Intell. 26, 2305 (2013)

    Article  Google Scholar 

  39. V. Rashidian, M. Hassanlourad, Int. J. Geomech. 14, 142 (2013a)

    Article  Google Scholar 

  40. V. Rashidian, M. Hassanlourad, Geotech. Geol. Eng. 31, 1231 (2013b)

    Article  Google Scholar 

  41. F. Kalantary, A. Kordnaeij, Sci. Res. Essays 7, 2835 (2012)

    Google Scholar 

  42. J. Tinoco, A.G. Correia, P. Cortez, Comput. Geotech. 55, 132 (2014)

    Article  Google Scholar 

  43. A. Hossein Alavi, A. Hossein Gandomi, A. Mollahassani, A. Akbar Heshmati, A. Rashed, J. Plant Nutrition Soil Sci. 173, 368 (2010)

    Article  Google Scholar 

  44. Z. Liu, J. Shao, W. Xu, Q. Wu, Acta Geotech. 10, 651 (2015)

    Article  Google Scholar 

  45. Y. Erzin, D. Turkoz, Neural Comput. Appl. 27, 1415 (2016)

    Article  Google Scholar 

  46. V.R. Kohestani, M. Hassanlourad, Int. J. Geomech. 16, 04015038 (2016)

    Article  Google Scholar 

  47. M.M. Yadollahi, A. Benli, R. Demirboga, Neural Comput. Appl. 28, 1453 (2017)

    Article  Google Scholar 

  48. Y. Erzin, N. Ecemis, Neural Comput. Appl. (2016) DOI:10.1007/s00521-016-2371-z

  49. Y.M. Najjar, I.A. Basheer, W.A. Naouss, Comput. Geotech. 18, 167 (1996)

    Article  Google Scholar 

  50. S.K. Sinha, M.C. Wang, Geotech. Geol. Eng. 26, 47 (2008)

    Article  Google Scholar 

  51. O. Günaydin, Environ. Geol. 57, 203 (2009)

    Article  ADS  Google Scholar 

  52. S. Sinivasulu, V. Padmavathi, H. Araki, S. Borzooei, M.R. Madhav, ANN based prediction and sensitivity analyses of maximum dry unit weight and optimum moisture content values over a large range, in 8th International Symposium on Lowland Technology (2012) pp. 346--352, DOI:10.13140/RG.2.1.5033.6163

  53. D. Mohammadzadeh, J.B. Bazaz, A.H. Alavi, Eng. Appl. Artif. Intell. 33, 58 (2014)

    Article  Google Scholar 

  54. A.G. Ivakhnenko, IEEE Trans. Syst. Man. Cybern. SMC-1, 364 (1971)

    Article  Google Scholar 

  55. V. Garg, J. Hydrol. Eng. 20, C6014002 (2014)

    Article  Google Scholar 

  56. S.J. Farlow, Self-organizing Method in Modelling: GMDH Type Algorithm 54 (CRC Press, 1984)

  57. S.K. Das, P.K. Basudhar, Lowland Technol. Int. 9, 50 (2007)

    Google Scholar 

  58. A. Ardakani, A. Kordnaeij, Eur. J. Environ. Civ. Eng. (2017) DOI:10.1080/19648189.2017.1304269

  59. R.Z. Moayed, A. Kordnaeij, H. Mola-Abasi, Geotech. Geol. Eng. (2017) DOI:10.1007/s10706-017-0314-9

  60. H. Mola-Abasi, A. Eslami, P. Tabatabaeishorijeh, Arab. J. Sci. Eng. 38, 829 (2013)

    Article  Google Scholar 

  61. A. Kordnaeij, F. Kalantary, B. Kordtabar, H. Mola-Abasi, Soils Found. 55, 1335 (2015)

    Article  Google Scholar 

  62. R. Ziaie Moayed, A. Kordnaeij, H. Mola-Abasi, Neural Comput. Appl. (2016) DOI:10.1007/s00521-016-2390-9

  63. H. MolaAbasi, I. Shooshpasha, Eur. Phys. J. Plus 131, 108 (2016)

    Article  Google Scholar 

  64. ASTM Standard D4318, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (ASTM International, West Conshohocken, PA, 2010) www.astm.org

  65. ASTM Standard D2487, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) (ASTM International, West Conshohocken, PA, 2011) www.astm.org

  66. S. Ketabchi, H. Ghanadzadeh, A. Ghanadzadeh, S. Fallahi, M. Ganji, J. Chem. Thermodyn. 42, 1352 (2010)

    Article  Google Scholar 

  67. B. Derras, A. Beckkouche, Leban. Sci. J. 12, 101 (2011)

    Google Scholar 

  68. M. Momeni, R. Nazir, D. Jahed Armaghani, H. Maizir, Measurement 57, 122 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Kordnaeij.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanlourad, M., Ardakani, A., Kordnaeij, A. et al. Dry unit weight of compacted soils prediction using GMDH-type neural network. Eur. Phys. J. Plus 132, 357 (2017). https://doi.org/10.1140/epjp/i2017-11623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11623-5

Navigation