Quantification of free convection for embarked QFN64 electronic package: An experimental and numerical survey

Regular Article
  • 10 Downloads

Abstract.

Embarked Quad Flat Non-lead (QFN) electronic devices are equipped with a significant number of sensors used for flight parameters measurement purposes. Their accuracy directly depends on the package thermal state. Flight safety therefore depends on the reliability of these QFNs, whose junction temperature must remain as low as possible while operating. The QFN64 is favored for these applications. In the operating power range considered here (0.01-0.1W), the study shows that radiative heat transfer is negligible with respect to natural convective exchanges. It is then essential to quantify the convective heat transfer coefficient on its different areas so that the arrangement is properly dimensioned. This is the objective of this work. The device is welded on a PCB which may be inclined with respect to the horizontal plane by an angle ranging from \(0^{\circ}\) to \(90^{\circ}\). Numerical approach results are confirmed by thermal and electrical measurements carried out on prototypes for all power-inclination angle combinations. The correlations here proposed help determine the natural convective heat transfer coefficient in any area of the assembly. This work allowed to thermally characterize and certify a new QFN64 package equipped with sensors designed for aeronautics, currently under industrialization process.

References

  1. 1.
    A. Sohail, A. Samiulhaq, D. Vieru, Eur. Phys. J. Plus 129, 28 (2014)CrossRefGoogle Scholar
  2. 2.
    M.M. Rashidi, H. Shahmohamadi, Commun. Nonlinear Sci. Numer. Simul. 14, 2999 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    M. Guedda, M. Sriti, D. Achemlal, Eur. Phys. J. Plus 129, 170 (2014)CrossRefGoogle Scholar
  4. 4.
    H.F. Öztop, K. Al-Salem, Y. Varol, I. Pop, M. Firat, Int. J. Numer. Methods Heat Fluid Flow 22, 1053 (2012)CrossRefGoogle Scholar
  5. 5.
    E. Abu-Nada, Int. Commun. Heat Mass Transf. 69, 84 (2015)CrossRefGoogle Scholar
  6. 6.
    T. Basak, R.S. Kaluri, A.R. Balakrishnan, Numer. Heat Transf. A 62, 336 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A. Bairi, J.M. García de María, Int. J. Heat Mass Transfer 66, 355 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Darzi, M. Vatani M., S.E. Ghasemi, D.D. Ganji, Eur. Phys. J. Plus 130, 100 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Varol, H.F. Oztop, A. Varol, Int. Commun. Heat Mass Transf. 34, 19 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, Eur. Phys. J. Plus 130, 225 (2015)CrossRefGoogle Scholar
  11. 11.
    M.A. Sheremet, I. Pop, Eur. Phys. J. Plus 130, 107 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Bairi, Appl. Therm. Eng. 28, 1267 (2008)CrossRefGoogle Scholar
  13. 13.
    R. Kandasamy, S. Subramanyam, Int. J. Numer. Methods Heat Fluid Flow 15, 61 (2005)CrossRefGoogle Scholar
  14. 14.
    A. Bairi, Int. Commun. Heat Mass Transf. 72, 94 (2016)CrossRefGoogle Scholar
  15. 15.
    Integrated Circuits Thermal Test Method Environmental Conditions-Natural Convection, Jedec Solid State Tech. Association, JESD51-2A (2008)Google Scholar
  16. 16.
    QFN (Quad Flat Pack No-Lead), Freescale Semiconductor Application Note, Document Number: AN4530 Rev 0, 5/2012Google Scholar
  17. 17.
    Atmel 8826A-SEEPROM-PCB, Mounting Guidelines Surface Mount PackagesGoogle Scholar
  18. 18.
    A. Bairi, Microelectron. Reliabil. 74, 67 (2017)CrossRefGoogle Scholar
  19. 19.
    S.V. Patankar, Numerical Heat Transfer and Fluid Flow, edited by W.J. Minkowycz, E. Sparrows (Taylor and Francis Publishers, 1980)Google Scholar
  20. 20.
    H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson Education Limited, 1995)Google Scholar
  21. 21.
    A. Bairi, Microelectron. Reliabil. 66, 85 (2016)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    M. Gustavsson, H. Nagai, T. Okutani, Solid State Phenom. 124-126, 1641 (2007)CrossRefGoogle Scholar
  24. 24.
    Q.C. Wang, Z.C. Wu, X.P. Zhu, Int. J. Numer. Methods Heat Fluid Flow 25, 25 (2015)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.University of ParisLaboratoire Thermique Interfaces EnvironnementVille d’AvrayFrance

Personalised recommendations