A high-speed, reconfigurable, channel- and time-tagged photon arrival recording system for intensity-interferometry and quantum optics experiments

Regular Article
  • 26 Downloads

Abstract.

We present a compact, inexpensive multichannel module, APODAS (Avalanche Photodiode Output Data Acquisition System), capable of detecting 0.8 billion photons per second and providing real-time recording on a computer hard-disk, of channel- and time-tagged information of the arrival of upto 0.4 billion photons per second. Built around a Virtex-5 Field Programmable Gate Array (FPGA) unit, APODAS offers a temporal resolution of 5 nanoseconds with zero deadtime in data acquisition, utilising an efficient scheme for time and channel tagging and employing Gigabit ethernet for the transfer of data. Analysis tools have been developed on a Linux platform for multi-fold coincidence studies and time-delayed intensity interferometry. As illustrative examples, the second-order intensity correlation function (g2) of light from two commonly used sources in quantum optics —a coherent laser source and a dilute atomic vapour emitting spontaneously, constituting a thermal source— are presented. With easy reconfigurability and with no restriction on the total record length, APODAS can be readily used for studies over various time scales. This is demonstrated by using APODAS to reveal Rabi oscillations on nanosecond time scales in the emission of ultracold atoms, on the one hand, and, on the other hand, to measure the second-order correlation function on the millisecond time scales from tailored light sources. The efficient and versatile performance of APODAS promises its utility in diverse fields, like quantum optics, quantum communication, nuclear physics, astrophysics and biology.

References

  1. 1.
    Gordon Baym, Acta Phys. Pol. 29, 1839 (1998)Google Scholar
  2. 2.
    C. Barbieri, M.K. Daniel, W.J. de Wit, D. Dravins, H. Jensen, P. Kervella, S. Le Bohec, F. Malbet, P. Nunez, J.P. Ralston, E.N. Ribak, arXiv:0903.0062 [astro-ph.IM]
  3. 3.
    K. Muhammed Shafi, Deepak Pandey, Buti Suryabrahmam, B.S. Girish, Hema Ramachandran, J. Phys. B: At. Mol. Opt. Phys. 49, 025301 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Eugene Novikov, Johan Hofkens, Mircea Cotlet, Frans C. De Schryver, Nol Boens, New Analysis of Single Molecule Fluorescence Using Series of Photon Arrival Times, in Rev. Fluorescence, Vol. 1, edited by Chris D. Geddes, Joseph R. Locowicz (Springer Science and Business Media, 2004) pp. 299--340Google Scholar
  5. 5.
    Ted A. Laurence, Achillefs N. Kapanidis, Xiangxu Kong, Daniel S. Chemla, Shimon Weiss, J. Phys. Chem. B 108, 3051 (2004)CrossRefGoogle Scholar
  6. 6.
    D. Branning, S. Khanal, Y.H. Shin, B. Clary, M. Beck, Rev. Sci. Instrum. 82, 016102 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Raphael C. Pooser, Dennis D. Earl, Philip G. Evans, Brian Williams, Jason Schaake, Travis S. Humble, J. Mod. Opt. 59, 1500 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    S. Bali, D. Hoffmann, J. Siman, T. Walker, Phys. Rev. A 53, 3469 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Michael Wahl, Hans-Jurgen Rahn, Tino Rhlicke, Gerald Kell, Daniel Nettels, Frank Hillger, Ben Schuler, Rainer Erdmann, Rev. Sci. Instrum. 79, 123113 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S. Antonioli, L. Miari, A. Cuccato, M. Crotti, I. Rech, M. Ghioni, Rev. Sci. Instrum. 84, 064705 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Matteo Crotti, Ivan Rech, Massimo Ghioni, IEEE J. Solid-State Circ. 47, 699 (2012)CrossRefGoogle Scholar
  12. 12.
    A. Cuccato, S. Antonioli, M. Crotti, I. Labanca, A. Gulinatti, I. Rech, M. Ghioni, IEEE Photon. J. 5, 6801514 (2013)CrossRefGoogle Scholar
  13. 13.
    Benjamin D. Gamari, Dianwen Zhang, Richard E. Buckman, Peker Milas, John S. Denker, Hui Chen, Hongmin Li, Lori S. Goldner, Am. J. Phys. 82, 712 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Marc Assmann, Franziska Veit, Jean-Sebastian Tempel, Thorsten Berstermann, Heinrich Stolz, Mike van der Poel, Jrn M. Hvam, Manfred Bayer, Opt. Express 18, 20229 (2010)CrossRefGoogle Scholar
  15. 15.
    Qiurong Yan, Baosheng Zhao, Lizhi Sheng, Yong’an Liu, Rev. Sci. Instrum. 82, 053105 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    E. Bayer, M. Traxler, IEEE Trans. Nucl. Sci. 58, 1547 (2011)ADSCrossRefGoogle Scholar
  17. 17.
  18. 18.
    Virtex-5 FPGA User Guide, UG 190(v5.3), May 17, 2010Google Scholar
  19. 19.
    Peeyush Prasad, A Network Centric Receiver Architecture for Low Frequency Arrays, PhD thesis, Raman Research Institute, India (2008) dspace.rri.res.in/bitstream/2289/4318/1/Peeyush_thesis_fulltext.pdfGoogle Scholar
  20. 20.
    Deepak Pandey, Nandan Satapathy, Buti Suryabrahmam, J. Solomon Ivan, Hema Ramachandran, Eur. Phys. J. Plus 129, 115 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Castelletto, Ivo Pietro Degiovanni, Alan Migdall, Sergey Polyakov, Valentina Schettini, J. Mod. Opt. 54, 337 (2006)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • B. S. Girish
    • 1
  • Deepak Pandey
    • 1
  • Hema Ramachandran
    • 1
  1. 1.Raman Research InstituteC.V. Raman Avenue, SadashivnagarBangaloreIndia

Personalised recommendations