Skip to main content
Log in

A high-speed, reconfigurable, channel- and time-tagged photon arrival recording system for intensity-interferometry and quantum optics experiments

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We present a compact, inexpensive multichannel module, APODAS (Avalanche Photodiode Output Data Acquisition System), capable of detecting 0.8 billion photons per second and providing real-time recording on a computer hard-disk, of channel- and time-tagged information of the arrival of upto 0.4 billion photons per second. Built around a Virtex-5 Field Programmable Gate Array (FPGA) unit, APODAS offers a temporal resolution of 5 nanoseconds with zero deadtime in data acquisition, utilising an efficient scheme for time and channel tagging and employing Gigabit ethernet for the transfer of data. Analysis tools have been developed on a Linux platform for multi-fold coincidence studies and time-delayed intensity interferometry. As illustrative examples, the second-order intensity correlation function (g 2) of light from two commonly used sources in quantum optics —a coherent laser source and a dilute atomic vapour emitting spontaneously, constituting a thermal source— are presented. With easy reconfigurability and with no restriction on the total record length, APODAS can be readily used for studies over various time scales. This is demonstrated by using APODAS to reveal Rabi oscillations on nanosecond time scales in the emission of ultracold atoms, on the one hand, and, on the other hand, to measure the second-order correlation function on the millisecond time scales from tailored light sources. The efficient and versatile performance of APODAS promises its utility in diverse fields, like quantum optics, quantum communication, nuclear physics, astrophysics and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gordon Baym, Acta Phys. Pol. 29, 1839 (1998)

    Google Scholar 

  2. C. Barbieri, M.K. Daniel, W.J. de Wit, D. Dravins, H. Jensen, P. Kervella, S. Le Bohec, F. Malbet, P. Nunez, J.P. Ralston, E.N. Ribak, arXiv:0903.0062 [astro-ph.IM]

  3. K. Muhammed Shafi, Deepak Pandey, Buti Suryabrahmam, B.S. Girish, Hema Ramachandran, J. Phys. B: At. Mol. Opt. Phys. 49, 025301 (2016)

    Article  ADS  Google Scholar 

  4. Eugene Novikov, Johan Hofkens, Mircea Cotlet, Frans C. De Schryver, Nol Boens, New Analysis of Single Molecule Fluorescence Using Series of Photon Arrival Times, in Rev. Fluorescence, Vol. 1, edited by Chris D. Geddes, Joseph R. Locowicz (Springer Science and Business Media, 2004) pp. 299--340

  5. Ted A. Laurence, Achillefs N. Kapanidis, Xiangxu Kong, Daniel S. Chemla, Shimon Weiss, J. Phys. Chem. B 108, 3051 (2004)

    Article  Google Scholar 

  6. D. Branning, S. Khanal, Y.H. Shin, B. Clary, M. Beck, Rev. Sci. Instrum. 82, 016102 (2011)

    Article  ADS  Google Scholar 

  7. Raphael C. Pooser, Dennis D. Earl, Philip G. Evans, Brian Williams, Jason Schaake, Travis S. Humble, J. Mod. Opt. 59, 1500 (2012)

    Article  ADS  Google Scholar 

  8. S. Bali, D. Hoffmann, J. Siman, T. Walker, Phys. Rev. A 53, 3469 (1996)

    Article  ADS  Google Scholar 

  9. Michael Wahl, Hans-Jurgen Rahn, Tino Rhlicke, Gerald Kell, Daniel Nettels, Frank Hillger, Ben Schuler, Rainer Erdmann, Rev. Sci. Instrum. 79, 123113 (2008)

    Article  ADS  Google Scholar 

  10. S. Antonioli, L. Miari, A. Cuccato, M. Crotti, I. Rech, M. Ghioni, Rev. Sci. Instrum. 84, 064705 (2013)

    Article  ADS  Google Scholar 

  11. Matteo Crotti, Ivan Rech, Massimo Ghioni, IEEE J. Solid-State Circ. 47, 699 (2012)

    Article  Google Scholar 

  12. A. Cuccato, S. Antonioli, M. Crotti, I. Labanca, A. Gulinatti, I. Rech, M. Ghioni, IEEE Photon. J. 5, 6801514 (2013)

    Article  Google Scholar 

  13. Benjamin D. Gamari, Dianwen Zhang, Richard E. Buckman, Peker Milas, John S. Denker, Hui Chen, Hongmin Li, Lori S. Goldner, Am. J. Phys. 82, 712 (2014)

    Article  ADS  Google Scholar 

  14. Marc Assmann, Franziska Veit, Jean-Sebastian Tempel, Thorsten Berstermann, Heinrich Stolz, Mike van der Poel, Jrn M. Hvam, Manfred Bayer, Opt. Express 18, 20229 (2010)

    Article  Google Scholar 

  15. Qiurong Yan, Baosheng Zhao, Lizhi Sheng, Yong’an Liu, Rev. Sci. Instrum. 82, 053105 (2011)

    Article  ADS  Google Scholar 

  16. E. Bayer, M. Traxler, IEEE Trans. Nucl. Sci. 58, 1547 (2011)

    Article  ADS  Google Scholar 

  17. https://www.xilinx.com/support/documentation/data4_sheets/ds100.pdf

  18. Virtex-5 FPGA User Guide, UG 190(v5.3), May 17, 2010

  19. Peeyush Prasad, A Network Centric Receiver Architecture for Low Frequency Arrays, PhD thesis, Raman Research Institute, India (2008) dspace.rri.res.in/bitstream/2289/4318/1/Peeyush_thesis_fulltext.pdf

  20. Deepak Pandey, Nandan Satapathy, Buti Suryabrahmam, J. Solomon Ivan, Hema Ramachandran, Eur. Phys. J. Plus 129, 115 (2014)

    Article  Google Scholar 

  21. S. Castelletto, Ivo Pietro Degiovanni, Alan Migdall, Sergey Polyakov, Valentina Schettini, J. Mod. Opt. 54, 337 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girish, B.S., Pandey, D. & Ramachandran, H. A high-speed, reconfigurable, channel- and time-tagged photon arrival recording system for intensity-interferometry and quantum optics experiments. Eur. Phys. J. Plus 132, 348 (2017). https://doi.org/10.1140/epjp/i2017-11610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11610-x

Navigation