Abstract.
In this paper, a spectral method based on the four kinds of rational Chebyshev functions is proposed to approximate the solution of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet. First, by using the quasilinearization method (QLM), the model which is a nonlinear ordinary differential equation is converted to a sequence of linear ordinary differential equations (ODEs). By applying the proposed method on the ODEs in each iteration, the equations are converted to a system of linear algebraic equations. The results indicate the high accuracy and convergence of our method. Moreover, the effects of the Eyring-Powell fluid material parameters are discussed.
This is a preview of subscription content, access via your institution.
References
M. Ashraf, M. Bilal, T. Hayat, A. Alsaedi, Eur. Phys. J. Plus 130, 5 (2015)
J. Rahimi, D. Ganji, M. Khaki, K. Hosseinzadeh, Alex. Eng. J. (2016) DOI:10.1016/j.aej.2016.11.006
T. Javed, N. Ali, Z. Abbas, M. Sajid, Chem. Eng. Commun. 200, 327 (2013)
T. Hayat, M. Zubair, M. Waqas, A. Alsaedi, M. Ayub, Results Phys. 7, 99 (2017)
L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970)
M. Turkyilmazoglu, Int. J. Heat Mass Transfer 72, 1 (2014)
W. Ibrahim, B. Shankar, M.M. Nandeppanavar, Int. J. Heat Mass Transfer 56, 1 (2013)
T. Hayat, N. Aslam, M. Rafiq, F.E. Alsaadi, Results Phys. 7, 518 (2017)
I. Khan, M. Qasim, S. Shafie, Thermal Sci. 20, 1903 (2016)
S.A. Gaffar, V. Ramachandra Prasad, O. Anwar Bég, Alex. Eng. J. 54, 829 (2015)
S.A. Gaffar, V. Ramachandra Prasad, E.K. Reddy, Alex. Eng. J. 55, 875 (2016)
T. Hayat, Z. Iqbal, M. Qasim, S. Obaidat, Int. J. Heat Mass Transfer 55, 1817 (2012)
A. Ara, N.A. Khan, H. Khan, F. Sultan, Ain Shams Eng. J. 5, 1337 (2014)
A.M. Megahed, Z. Naturforsch. 70, 163 (2015)
S.A. Gaffar, V. Ramachandra Prasad, B. Vijaya, J. Braz. Soc. Mech. Sci. Eng. 39, 2747 (2017)
R. Ellahi, E. Shivanian, S. Abbasbandy, T. Hayat, Int. J. Numer. Methods Heat Fluid Flow 26, 1433 (2016)
M. Sheikholeslami, D. Ganji, H. Ashorynejad, Powder Technol. 239, 259 (2013)
M. Sheikholeslami, D.D. Ganji, H.R. Ashorynejad, H.B. Rokni, Appl. Math. Mech. 33, 25 (2012)
M. Sheikholeslami, D.D. Ganji, Comput. Methods Appl. Mech. Eng. 283, 651 (2015)
M. Sheikholeslami, M.B. Gerdroodbary, D. Ganji, Comput. Methods Appl. Mech. Eng. 315, 831 (2017)
M. Sheikholeslami, M. Rashidi, T. Hayat, D. Ganji, J. Mol. Liq. 218, 393 (2016)
M. Sheikholeslami, K. Vajravelu, M.M. Rashidi, Int. J. Heat Mass Transfer 92, 339 (2016)
K. Parand, S. Abbasbandy, S. Kazem, J. Rad, Commun. Nonlinear Sci. Numer. Simul. 16, 4250 (2011)
K. Parand, A. Taghavi, J. Comput. Appl. Math. 233, 980 (2009)
S. Abbasbandy, T. Hayat, H.R. Ghehsareh, A. Alsaedi, Appl. Math. Mech. 34, 921 (2013)
J. Amani R., S. Kazem, M. Shaban, K. Parand, A. Yildirim, Math. Method Appl. Sci. 37, 329 (2014)
S. Abbasbandy, E. Shivanian, Commun. Nonlinear Sci. Numer. Simul. 16, 2745 (2011)
K. Parand, A. Rezaei, A. Taghavi, Math. Method Appl. Sci. 33, 2076 (2010)
K. Parand, M. Delkhosh, J. Comput. Appl. Math. 317, 624 (2017)
K. Parand, M. Delkhosh, Ric. Mat. 65, 307 (2016)
Z. Huang, J.P. Boyd, J. Comput. Appl. Math. 302, 340 (2016)
J.P. Boyd, Numer. Math. Theory Methods Appl. 4, 142 (2011)
J.C. Mason, D.C. Handscomb, Chebyshev Polynomials (CRC Press, 2003)
K. Parand, S. Khaleqi, Eur. Phys. J. Plus 131, 24 (2016)
J.P. Boyd, Chebyshev and Fourier Spectral Methods (Courier Corporation, 2001)
V. Mandelzweig, F. Tabakin, Comput. Phys. Commun. 141, 268 (2001)
R.E. Kalaba, R.E. Bellman, J. Math. Mech. 8, 519 (1959)
K. Parand, P. Mazaheri, H. Yousefi, M. Delkhosh, Eur. Phys. J. Plus 132, 77 (2017)
K. Parand, P. Mazaheri, M. Delkhosh, A. Ghaderi, SeMA J. (2017) DOI:10.1007/s40324-016-0103-z
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Parand, K., Mahdi Moayeri, M., Latifi, S. et al. A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions. Eur. Phys. J. Plus 132, 325 (2017). https://doi.org/10.1140/epjp/i2017-11600-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2017-11600-0