Skip to main content
Log in

Quantum-mechanical estimation of rectangular waveguide parameters with atomic entropy computation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The field within a rectangular waveguide is associated with an electromagnetic four-potential which is used to excite a 3-dimensional (3D) quantum harmonic oscillator/atom within the guide and from the transition probabilities of the oscillators/atoms within the guide, we estimate the mode that has been excited as well as dimension of the guide. Finally, we make a small computation regarding the quantum information transmitted by the waveguide field (both classical and quantum e-m fields) having random phases and amplitudes to the atomic oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Parthasarathy, Antennas and Wave Propagation (Ane books, Delhi, India, 2015)

  2. C.R. Doerr, H. Kogelnik, J. Lightwave Technol. 26, 1176 (2008)

    Article  ADS  Google Scholar 

  3. A. Omari et al., IEEE J. Select. Topics Quantum Electron. 20, 4 (2014)

    Article  Google Scholar 

  4. D.F. Williams, B.K. Alpert, IEEE Trans. Microwave Theory Techniques 49, 615 (2001)

    Article  ADS  Google Scholar 

  5. V.P. Dokuchaev, Radiophys. Quantum Electron. 41, 301 (1997)

    Article  ADS  Google Scholar 

  6. L.A. Vainshtein, Electromagnetic Waves, 2nd edition (Radio i Svyaz, Moscow, 1988) (in Russian)

  7. V.V. Nikolskii, T.I. Nikolskaya, Electrodynamics and Radio Wave Propagation (Nauka, Moscow, 1989) (in Russian)

  8. B.Z. Katsenelenbaum, High-Frequency Electrodynamics (Nauka, Moscow, 1966) (in Russian)

  9. G.T. Markov, A.F. Chaplin, Excitation of Electromagnetic Waves (Radio i Svyaz, Moscow, 1983) (in Russian)

  10. Leonard I. Schiff, Quantum Mechanics (Tata Mcgraw-Hill Education, Delhi, India, 2014)

  11. K. Gautam et al., Quantum Inf. Process. 14, 3279 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Gautam et al., Quantum Inf. Process. 14, 3257 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. K. Zhu, S. Li, H. Tang, Quantum Inf. Process. 12, 2901 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. Mandel, Wolf, Optical coherence and quantum optics (Cambridge University Press, New York, USA, 2013)

  15. H.W. Li et al., New J. Phys. 15, 063017 (2013)

    Article  ADS  Google Scholar 

  16. P. Stepanov et al., Appl. Phys. Lett. 106, 041112 (2015)

    Article  ADS  Google Scholar 

  17. J. Doukas et al., Phys. Rev. D 90, 024022 (2014)

    Article  ADS  Google Scholar 

  18. A. Vaish, H. Parthasarathy, Finite element analysis of propagation modes in a waveguide: Effect of gravitational field in HAIT Journal of Science and Engineering B (HAIT, 2007)

  19. C. Nappi et al., Phys. Rev. B 92, 224503 (2015)

    Article  ADS  Google Scholar 

  20. J. Doppler et al., Nature 537, 76 (2016)

    Article  ADS  Google Scholar 

  21. R.T. Deck, M. Mirkov, B.G. Bagley, J. Lightwave Technol. 16, 1703 (1998)

    Article  ADS  Google Scholar 

  22. M. Skorobogatiy et al., J. Opt. Soc. Am. B 19, 2867 (2002)

    Article  ADS  Google Scholar 

  23. A. Javadi et al., Nat. Commun. 6, 8655 (2015)

    Article  Google Scholar 

  24. D.V. Evans, M. Levitin, D. Vassiliev, J. Fluid Mech. 261, 21 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Exner et al., J. Math. Phys. 37, 4867 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Exner, S.A. Vugalter, Ann. Inst. H. Poincaré 65, 109 (1996)

    Google Scholar 

  27. J. Dittrich, J. Krz, J. Math. Phys. 43, 3892 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  28. D. Krejcirk, E. Zuazua, J. Differ. Equ. 250, 2334 (2011)

    Article  ADS  Google Scholar 

  29. D. Borisov, R. Bunoiu, G. Cardone, Ann. Inst. H. Poincaré 11, 1591 (2010)

    Article  Google Scholar 

  30. D. Borisov, R. Bunoiu, G. Cardone, C. R. Acad. Sci. Paris, Ser. I 349, 53 (2011)

    Article  Google Scholar 

  31. Ph. Briet, J. Dittrich, E. Soccorsi, J. Math. Phys. 55, 112104 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. D.A. Stone, C.A. Downing, M.E. Portnoi, Phys. Rev. B 86, 075464 (2012)

    Article  ADS  Google Scholar 

  33. J.D. Jackson, Classical electrodynamics (John Wiley & Sons, Inc., USA, 1998)

  34. R.R. Hartmann, N.J. Robinson, M.E. Portnoi, Phys. Rev. B 81, 245431 (2010)

    Article  ADS  Google Scholar 

  35. Mark M. Wilde, Quantum information theory (Cambridge University Press, New York, USA, 2013)

  36. Edward C. Jordan, Keith G. Balmain, Electromagnetic waves and radiating systems (Prentice Hall India Learning, Delhi, India, 1964)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, L., Shankar Pandey, V., Parthasarathy, H. et al. Quantum-mechanical estimation of rectangular waveguide parameters with atomic entropy computation. Eur. Phys. J. Plus 132, 285 (2017). https://doi.org/10.1140/epjp/i2017-11558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11558-9

Navigation