Growth and instability of a phospholipid vesicle in a bath of fatty acids

Regular Article

Abstract.

Using a microfluidic trap, we study the behavior of individual phospholipid vesicles in contact with fatty acids. We show that spontaneous fatty acids insertion inside the bilayer is controlled by the vesicle size, osmotic pressure difference across the membrane and fatty acids concentration in the external bath. Depending on these parameters, vesicles can grow spherically or become unstable and fragment into several daughter vesicles. We establish the phase diagram for vesicle growth and we derive a simple thermodynamic model that reproduces the time evolution of the vesicle volume. Finally, we show that stable growth can be achieved on an artificial cell expressing a simple set of bacterial cytoskeletal proteins, paving the way toward artificial cell reproduction.

Supplementary material

13360_2017_1719_MOESM1_ESM.avi (1 mb)
Supplementary material
13360_2017_1719_MOESM2_ESM.avi (605 kb)
Supplementary material
13360_2017_1719_MOESM3_ESM.avi (1.4 mb)
Supplementary material

References

  1. 1.
    R.F. Gesteland, T.R. Cech, J.F. Atkins (Editors), The RNA World, 2nd edition (Cold Spring Harbor Press, Cold Spring Harbor, 1998)Google Scholar
  2. 2.
    L.E. Orgel, Crit. Rev. Biochem. Mol. Biol. 39, 99 (2004)CrossRefGoogle Scholar
  3. 3.
    J.W. Szostak, D.P. Bartel, P.L. Luisi, Nature 409, 387 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    I.A. Chen, P. Walde, Cold Spring Harb. Perspect. Biol. 2, a002170 (2010)CrossRefGoogle Scholar
  5. 5.
    J.M. Gebicki, M. Hicks, Nature 243, 232 (1973)ADSCrossRefGoogle Scholar
  6. 6.
    W.R. Hargreaves, D.W. Deamer, Biochemistry 17, 3759 (1978)CrossRefGoogle Scholar
  7. 7.
    M.M. Hanczyc, S.M. Fujikawa, J.W. Szostak, Science 302, 618 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    P. Walde, R. Wick, M. Fresta, A. Mangone, P.L. Luisi, J. Am. Chem. Soc. 116, 11649 (1994)CrossRefGoogle Scholar
  9. 9.
    T.F. Zhu, J.W. Szostak, J. Am. Chem. Soc. 131, 5705 (2009)CrossRefGoogle Scholar
  10. 10.
    I.A. Chen, R.W. Roberts, J.W. Szostak, Science 305, 1474 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    I.A. Chen, J.W. Szostak, Biophys J. 87, 988 (2004)CrossRefGoogle Scholar
  12. 12.
    Markvoort et al., Biophys. J. 99, 1520 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    P. Peterlin, V. Arrigler, K. Kogej, S. Svetina, P. Walde, Chem. Phys. Lipids 159, 67 (2009)CrossRefGoogle Scholar
  14. 14.
    C. Hentrich, J.W. Szostak, Langmuir 30, 14916 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Pautot, B.J. Frisken, D.A. Weitz, Langmuir 19, 2870 (2003)CrossRefGoogle Scholar
  16. 16.
    V. Noireaux, A. Libchaber, Proc. Natl. Acad. Sci. 101, 17669 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    G.V. Richieri, R.T. Ogata, A.M. Kleinfeld, J. Biol. Chem. 267, 23495 (1992)Google Scholar
  18. 18.
    B.M. Davis, J. Richens, P. O’Shea, Biophys. J. 101, 245 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    J. Shin, V.J. Noireaux, Biol. Eng. 4, 8 (2010)CrossRefGoogle Scholar
  20. 20.
    Y.T. Maeda, T. Nakadai, J. Shin, K. Uryu, V. Noireaux, A. Libchaber, ACS Synth Biol. 1, 53 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Chalmeau, N. Monina, J. Shin, C. Vieu, V. Noireaux, Biochim. Biophys. Acta 1808, 271 (2011)CrossRefGoogle Scholar
  22. 22.
    P.O. Olins, C.S. Devine, S.H. Rangwala, K.S. Kavka, Gene 73, 227 (1988)CrossRefGoogle Scholar
  23. 23.
    A. Huebner et al., Lab Chip 9, 692 (2009)CrossRefGoogle Scholar
  24. 24.
    R. Mercier, Y. Kawai, J. Errington, Cell 152, 997 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Osawa, D.E. Anderson, H.P. Erickson, Science 320, 792 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Laboratoire Matière et Systèmes ComplexesCNRS UMR 7057 Universitée Denis DiderotParisFrance
  2. 2.Center for Studies in Physics and BiologyRockefeller UniversityNew YorkUSA
  3. 3.School of Physics and AstronomyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations