Skip to main content
Log in

Influence of various temperature distributions on critical speed and vibrational characteristics of rotating cylindrical microshells with modified lengthscale parameter

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this article, the influences of various temperature distributions on the vibration analysis of temperature-dependent rotating cylindrical functionally graded (FG) microshells are investigated using the modified couple stress theory (MCST) in a thermal environment. MCST is applied to this model which is practical in the design and analysis of micro actuators and micro sensors. The modeled cylindrical FG microshell, its equations of motion and boundary conditions are derived by Hamilton’s principle and the first-order shear deformation theory (FSDT). For the first time, in the present study, the functionally graded lengthscale parameter changing along the thickness has been considered in temperature-dependent rotating cylindrical FG microshells. The accuracy of the presented model is verified with previous studies and also with those obtained by the Navier analytical method. The novelty of the current study is the consideration of rotation, various temperature distributions and size effect as well as satisfying various boundary conditions implemented on the proposed model using MCST. The generalized differential quadrature method (GDQM) is applied to discretize the equations of motion. In this study the simply supported conditions have been applied to edges \(\theta = 0,2\pi\) and various boundary conditions have been studied in \(x=0,L\). Finally, the effects of various geometrical and material parameters on natural frequencies are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Boukhari, H.A. Atmane, A. Tounsi, B. Adda, S. Mahmoud, Struct. Eng. Mech. 57, 837 (2016)

    Article  Google Scholar 

  2. S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Struct. Eng. Mech. 53, 1143 (2015)

    Article  Google Scholar 

  3. M. Bourada, A. Kaci, M.S.A. Houari, A. Tounsi, Steel Compos. Struct. 18, 409 (2015)

    Article  Google Scholar 

  4. H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, A. Tounsi, J. Braz. Soc. Mech. Sci. Eng. 38, 265 (2016)

    Article  Google Scholar 

  5. R. Shahsiah, M. Eslami, J. Thermal Stresses 26, 277 (2003)

    Article  Google Scholar 

  6. B. Mirzavand, M. Eslami, Effect of imperfection on buckling of functionally graded cylindrical shells under axial compression, in Proc. ISME, Isfahan, Iran (2005)

  7. B. Mirzavand, M.R. Eslami, R. Shahsiah, AIAA J. 43, 2073 (2005)

    Article  ADS  Google Scholar 

  8. B. Mirzavand, M. Eslami, J. Thermal Stresses 29, 37 (2006)

    Article  Google Scholar 

  9. R. Kadoli, N. Ganesan, J. Sound Vib. 289, 450 (2006)

    Article  ADS  Google Scholar 

  10. X. Wang, G. Sheng, J. Reinf. Plast. Compos. 27, 117 (2007)

    Article  Google Scholar 

  11. H. Huang, Q. Han, Eur. J. Mech.-A/Solids 29, 42 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. F. Alijani, M. Amabili, F. Bakhtiari-Nejad, Compos. Struct. 93, 2541 (2011)

    Article  Google Scholar 

  13. F. Alijani, M. Amabili, K. Karagiozis, F. Bakhtiari-Nejad, J. Sound Vib. 330, 1432 (2011)

    Article  ADS  Google Scholar 

  14. V. Ungbhakorn, N. Wattanasakulpong, Appl. Acoust. 74, 1045 (2013)

    Article  Google Scholar 

  15. H.-S. Shen, H. Wang, Compos. Part B: Eng. 60, 167 (2014)

    Article  Google Scholar 

  16. Z. Song, L. Zhang, K. Liew, Int. J. Mech. Sci. 115, 339 (2016)

    Article  Google Scholar 

  17. J. Sun, X. Xu, C. Lim, J. Thermal Stresses 37, 340 (2014)

    Article  Google Scholar 

  18. J.-H. Zhang, G.-Z. Li, S.-R. Li, Y.-B. Ma, J. Thermal Stresses 38, 959 (2015)

    Article  Google Scholar 

  19. R. Kandasamy, R. Dimitri, F. Tornabene, Compos. Struct. 157, 207 (2016)

    Article  Google Scholar 

  20. N. Jooybar, P. Malekzadeh, A. Fiouz, M. Vaghefi, Thin-Walled Struct. 103, 45 (2016)

    Article  Google Scholar 

  21. B. Bouderba, M.S.A. Houari, A. Tounsi, Steel Compos. Struct. 14, 85 (2013)

    Article  Google Scholar 

  22. M. Zidi, A. Tounsi, M.S.A. Houari, O.A. Bég, Aerospace Sci. Technol. 34, 24 (2014)

    Article  Google Scholar 

  23. A. Attia, A. Tounsi, E.A. Bedia, S. Mahmoud, Steel Compos. Struct. 18, 187 (2015)

    Article  Google Scholar 

  24. Y. Beldjelili, A. Tounsi, S. Mahmoud, Smart Struct. Syst. 18, 755 (2016)

    Article  Google Scholar 

  25. A. Tounsi, M.S.A. Houari, S. Benyoucef, Aerospace Sci. Technol. 24, 209 (2013)

    Article  Google Scholar 

  26. K. Bouafia, A. Kaci, M.S.A. Houari, A. Benzair, A. Tounsi, Smart Struct. Syst. 19, 115 (2017)

    Article  Google Scholar 

  27. W.A. Bedia, A. Benzair, A. Semmah, A. Tounsi, S. Mahmoud, Braz. J. Phys. 45, 225 (2015)

    Article  ADS  Google Scholar 

  28. F. Bounouara, K.H. Benrahou, I. Belkorissat, A. Tounsi, Steel Compos. Struct. 20, 227 (2016)

    Article  Google Scholar 

  29. I. Belkorissat, M.S.A. Houari, A. Tounsi, E. Bedia, S. Mahmoud, Steel Compos. Struct. 18, 1063 (2015)

    Article  Google Scholar 

  30. K. Al-Basyouni, A. Tounsi, S. Mahmoud, Compos. Struct. 125, 621 (2015)

    Article  Google Scholar 

  31. K. Mohammadi, M. Mahinzare, A. Rajabpour, M. Ghadiri, Eur. Phys. J. Plus 132, 115 (2017)

    Article  Google Scholar 

  32. M. Ghadiri, H. SafarPour, J. Thermal Stresses 40, 55 (2016)

    Article  Google Scholar 

  33. H. SafarPour, M. Ghadiri, Microfluidics Nanofluidics 21, 22 (2017)

    Article  Google Scholar 

  34. M.M. Barooti, H. Safarpour, M. Ghadiri, Eur. Phys. J. Plus 132, 6 (2017)

    Article  Google Scholar 

  35. G.H. Bryan, Proc. Camb. Philos. Soc. 7, 101 (1890)

    Google Scholar 

  36. R. DiTaranto, M. Lessen, J. Appl. Mech. 31, 700 (1964)

    Article  ADS  Google Scholar 

  37. A. Srinivasan, G.F. Lauterbach, J. Eng. Indust. 93, 1229 (1971)

    Article  Google Scholar 

  38. A. Zohar, J. Aboudi, Int. J. Mech. Sci. 15, 269 (1973)

    Article  Google Scholar 

  39. P. Malekzadeh, Y. Heydarpour, Compos. Struct. 94, 2971 (2012)

    Article  Google Scholar 

  40. G. Sheng, X. Wang, Nonlinear Dyn. 87, 1095 (2017)

    Article  Google Scholar 

  41. Ö. Civalek, Compos. Struct. 160, 267 (2017)

    Article  Google Scholar 

  42. S. Dey, S. Sarkar, A. Das, A. Karmakar, S. Adhikari, Int. J. Mech. Mater. Design 11, 425 (2015)

    Article  Google Scholar 

  43. D. Van Dung, H.T. Thiem, Latin Am. J. Solids Struct. 13, 2679 (2016)

    Article  Google Scholar 

  44. Z. Belabed, M.S.A. Houari, A. Tounsi, S. Mahmoud, O.A. Bég, Compos. Part B: Eng. 60, 274 (2014)

    Article  Google Scholar 

  45. H. Hebali, A. Tounsi, M.S.A. Houari, A. Bessaim, E.A.A. Bedia, J. Eng. Mech. 140, 374 (2014)

    Article  Google Scholar 

  46. G. Sheng, X. Wang, Appl. Math. Modell. 34, 2630 (2010)

    Article  Google Scholar 

  47. Z. Lang, L. Xuewu, Appl. Math. Modell. 37, 2279 (2013)

    Article  Google Scholar 

  48. S. Hosseini-Hashemi, M. Ilkhani, M. Fadaee, Int. J. Mech. Sci. 76, 9 (2013)

    Article  Google Scholar 

  49. R. Gholami, R. Ansari, A. Darvizeh, S. Sahmani, Int. J. Struct. Stability Dyn. 15, 1450070 (2015)

    Article  MathSciNet  Google Scholar 

  50. Y.T. Beni, F. Mehralian, H. Razavi, Compos. Struct. 120, 65 (2015)

    Article  Google Scholar 

  51. A. Baninajjaryan, Y.T. Beni, J. Theor. Biol. 382, 111 (2015)

    Article  Google Scholar 

  52. R. Ansari, R. Gholami, A. Norouzzadeh, S. Sahmani, Microfluidics Nanofluidics 19, 509 (2015)

    Article  Google Scholar 

  53. M. Ghadiri, H. Safarpour, Appl. Phys. A 122, 833 (2016)

    Article  ADS  Google Scholar 

  54. S. Sahmani, R. Ansari, R. Gholami, A. Darvizeh, Compos. Part B: Eng. 51, 44 (2013)

    Article  Google Scholar 

  55. E. Carrera, S. Brischetto, M. Cinefra, M. Soave, Compos. Part B: Eng. 42, 123 (2011)

    Article  Google Scholar 

  56. A. Neves, A. Ferreira, E. Carrera, M. Cinefra, C. Roque, R. Jorge et al., Eur. J. Mech.-A/Solids 37, 24 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  57. Y. Touloukian, in Thermophysical Properties of High Temperature Solid Materials, Vol. 4, Part 1 (Macmillan, 1967)

  58. F. Yang, A. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)

    Article  Google Scholar 

  59. J.R. Barber, Intermediate mechanics of materials, vol. 175 (Springer Science & Business Media, 2010)

  60. F. Ebrahimi, E. Salari, Mech. Adv. Mater. Struct. 23, 1379 (2016)

    Article  Google Scholar 

  61. R. Bellman, J. Casti, J. Math. Anal. Appl. 34, 235 (1971)

    Article  MathSciNet  Google Scholar 

  62. R. Bellman, B. Kashef, J. Casti, J. Comput. Phys. 10, 40 (1972)

    Article  ADS  Google Scholar 

  63. C. Shu, Differential Quadrature and its Application in Engineering (Springer Science & Business Media, 2012)

  64. C. Shu, B.E. Richards, Int. J. Numer. Methods Fluids 15, 791 (1992)

    Article  ADS  Google Scholar 

  65. Y. Tadi Beni, F. Mehralian, H. Zeighampour, Mech. Adv. Mater. Struct. 23, 791 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghadiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SafarPour, H., Mohammadi, K., Ghadiri, M. et al. Influence of various temperature distributions on critical speed and vibrational characteristics of rotating cylindrical microshells with modified lengthscale parameter. Eur. Phys. J. Plus 132, 281 (2017). https://doi.org/10.1140/epjp/i2017-11551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11551-4

Navigation