Skip to main content
Log in

Quantum engines and the range of the second law of thermodynamics in the noncommutative phase-space

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Two testable schemes for quantum heat engines are investigated under the quantization framework of noncommutative (NC) quantum mechanics (QM). By identifying the phenomenological connection between the phase-space NC driving parameters and an effective external magnetic field, the NC effects on the efficiency coefficient, \(\mathcal{N}\), of quantum engines can be quantified for two different cycles: an isomagnetic one and an isoenergetic one. In addition, paying a special attention to the quantum Carnot cycle, one notices that the inclusion of NC effects does not affect the maximal (Carnot) efficiency, \(\mathcal{N}^{C}\), ratifying the robustness of the second law of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics (Springer, Berlin-Heidelberg, 2009)

  2. E. Muñoz, F.J. Peña, Phys. Rev. E 89, 052107 (2014)

    Article  ADS  Google Scholar 

  3. H.T. Quan, Phys. Rev. E 79, 041129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Bustamante, J. Liphardt, F. Ritort, Phys. Today 54, 43 (2005)

    Article  Google Scholar 

  5. O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 109, 203006 (2012)

    Article  ADS  Google Scholar 

  6. B. Gardas, S. Deffner, Phys. Rev. E 92, 042126 (2015)

    Article  ADS  Google Scholar 

  7. D. Gelbwaser-Klimovsky, A. Aspuru-Guzik, J. Phys. Chem. Lett. 6, 3477 (2015)

    Article  Google Scholar 

  8. E.J. O’Reilly, A. Olaya-Castro, Nat. Commun. 5, 3012 (2014)

    Google Scholar 

  9. E. Romero et al., Nat. Phys. 10, 676 (2014)

    Article  Google Scholar 

  10. H. Li, J. Zou, W.-L. Yu, B.-M. Xu, B. Shao, Eur. Phys. J. D 86, 67 (2013)

    Article  Google Scholar 

  11. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  12. M.O. Scully, Phys. Rev. Lett. 88, 050602 (2002)

    Article  ADS  Google Scholar 

  13. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  14. M.O. Scully, K.R. Chapin, K.E. Dorfman, M.B. Kim, A. Svidzinsky, Proc. Natl. Acad. Sci. U.S.A. 108, 15097 (2011)

    Article  ADS  Google Scholar 

  15. R. Kosloff, Entropy 15, 2100 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.E. Bernardini, O. Bertolami, Phys. Rev. A 88, 012101 (2013)

    Article  ADS  Google Scholar 

  17. C. Bastos, O. Bertolami, N.C. Dias, J.N. Prata, J. Math. Phys. 49, 072101 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Bastos, O. Bertolami, N.C. Dias, J.N. Prata, Phys. Rev. D 78, 023516 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. C. Bastos, O. Bertolami, N.C. Dias, J.N. Prata, Int. J. Mod. Phys. A 24, 2741 (2009)

    Article  ADS  Google Scholar 

  20. C. Bastos, A.E. Bernardini, O. Bertolami, N.C. Dias, J.N. Prata, Phys. Rev. D 88, 085013 (2013)

    Article  ADS  Google Scholar 

  21. C. Bastos, A.E. Bernardini, O. Bertolami, N.C. Dias, J.N. Prata, Phys. Rev. D 93, 104055 (2016)

    Article  ADS  Google Scholar 

  22. J.F.G. Santos, A.E. Bernardini, C. Bastos, Physica A 438, 340 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. J.F.G. Santos, A.E. Bernardini, Physica A 445, 75 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Bastos, A.E. Bernardini, O. Bertolami, N.C. Dias, J.N. Prata, Phys. Rev. A 89, 042112 (2014)

    Article  ADS  Google Scholar 

  25. C. Bastos, A.E. Bernardini, O. Bertolami, N.C. Dias, J.N. Prata, Phys. Rev. D 90, 045023 (2014)

    Article  ADS  Google Scholar 

  26. C. Bastos, A.E. Bernardini, O. Bertolami, N.C. Dias, J.N. Prata, Phys. Rev. D 91, 065036 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, Mod. Phys. Lett. A 16, 2075 (2001)

    Article  ADS  Google Scholar 

  28. M. Rosenbaum, J.D. Vergara, L.R. Juarez, Phys. Lett. A 367, 1 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)

    Article  ADS  Google Scholar 

  30. R. Prange, S. Girvin, The Quantum Hall Effect (Springer, New York, 1987)

  31. O. Bertolami, J.G. Rosa, C.M.L. de Aragão, P. Castorina, D. Zappalà, Phys. Rev. D 72, 025010 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  32. O. Bertolami, J.G. Rosa, C. Aragão, P. Castorina, D. Zappalà, Mod. Phys. Lett. A 21, 795 (2006)

    Article  ADS  Google Scholar 

  33. R. Banerjee, B.D. Roy, S. Samanta, Phys. Rev. D 74, 045015 (2006)

    Article  ADS  Google Scholar 

  34. A. Connes, M.R. Douglas, A. Schwarz, JHEP 02, 003 (1998)

    Article  ADS  Google Scholar 

  35. M.R. Douglas, C. Hull, JHEP 02, 008 (1998)

    Article  ADS  Google Scholar 

  36. V. Schomerus, JHEP 06, 030 (1999)

    Article  ADS  Google Scholar 

  37. N. Seiberg, E. Witten, JHEP 09, 032 (1999)

    Article  ADS  Google Scholar 

  38. L. Jacak, P. Hawrylak, A. Wójs, Quantum Dots (Springer-Verlag, 1998)

  39. B.K. Pal, B. Roy, B. Basu, Phys. Lett. A 42, 374 (2010)

    Google Scholar 

  40. G.P. Beretta, Exp. Phys. Lett. 99, 20005 (2012)

    ADS  Google Scholar 

  41. M.O. Scully, Phys. Rev. Lett. 88, 050602 (2002)

    Article  ADS  Google Scholar 

  42. C.M. Bender, D.C. Brody, B.K. Meister, J. Phys. A 33, 4427 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  43. C.M. Bender, D.C. Brody, B.K. Meister, Proc. R. Soc. A 458, 1519 (2002)

    Article  ADS  Google Scholar 

  44. H. Groenewold, Physica 12, 405 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  45. J. Moyal, Proc. Camb. Phil. Soc. 45, 99 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  46. E. Wigner, Phys. Rev. 40, 749 (1932)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas F. G. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.F.G., Bernardini, A.E. Quantum engines and the range of the second law of thermodynamics in the noncommutative phase-space. Eur. Phys. J. Plus 132, 260 (2017). https://doi.org/10.1140/epjp/i2017-11538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11538-1

Navigation