Skip to main content
Log in

A study on binding energies of \(\Lambda\) hypernuclei

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The ground-state binding energies of hypernuclei containing single \(\Lambda\) hyperon have been studied in the framework of the non-relativistic Schrödinger equation with Hulthén potential as the interaction potential between the \(\Lambda\) hyperon and the nuclei core. The results obtained were found to be in good agreement with the experimental data and other theoretical estimates, which indicates that the interaction between \(\Lambda\) hyperon and the core of the nucleus may be well described by the Hulthén potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dansy et al., Philos. Mag. 44, 348 (1953)

    Article  Google Scholar 

  2. R. Bertini et al., Nucl. Phys. A 368, 365 (1981)

    Article  ADS  Google Scholar 

  3. A. Margaryan et al., J. Phys.: Conf. Ser. 496, 012006 (2014)

    Google Scholar 

  4. T. Hasegawa et al., Phys. Rev. C 53, 1210 (1996)

    Article  ADS  Google Scholar 

  5. R.E. Chrien et al., Annu. Rev. Nucl. Part. Sci. 39, 113 (1989)

    Article  ADS  Google Scholar 

  6. P.H. Pile et al., Phys. Rev. Lett. 66, 2585 (1991)

    Article  ADS  Google Scholar 

  7. L. Mi-Xiang et al., Chin. Phys. Lett. 26, 07210 (2009)

    Article  Google Scholar 

  8. R.E. Chrien et al., Nucl. Phys. A 478, 705c (1988)

    Article  ADS  Google Scholar 

  9. C. Milner et al., Phys. Rev. Lett. 54, 1237 (1985)

    Article  ADS  Google Scholar 

  10. N. Buyukcizmeci et al., Phys. Rev. C 88, 014611 (2013)

    Article  ADS  Google Scholar 

  11. N. Buyukcizmeci et al., Phys. Rev. C 93, 019902 (2016)

    Article  ADS  Google Scholar 

  12. N. Buyukcizmeci et al., AIP Conf. Proc. 1815, 060003 (2017)

    Article  Google Scholar 

  13. A. Nogga et al., Phys. Rev. Lett. 88, 172501 (2002)

    Article  ADS  Google Scholar 

  14. ALICE Collaboration (M. Colocci et al.), J. Phys. Conf. Ser. 612, 012065 (2015)

    Article  Google Scholar 

  15. T.O. Yamamoto et al., Phys. Rev. Lett. 115, 222501 (2015)

    Article  ADS  Google Scholar 

  16. A1 Collaboration (A. Esser et al.), Phys. Rev. Lett. 114, 232501 (2015)

    Article  ADS  Google Scholar 

  17. D.H. Davis, Nucl. Phys. A 754, 3c (2005)

    Article  ADS  Google Scholar 

  18. S.N. Nakamura, EPJ Web of Conferences 66, 01020 (2014)

    Article  Google Scholar 

  19. H. Tamura et al., Nucl. Phys. A 835, 3 (2010)

    Article  ADS  Google Scholar 

  20. Q.N. Usmani, A.R. Bodmer, Phys. Rev. C 60, 055215 (1999)

    Article  ADS  Google Scholar 

  21. A.S. Botvina et al., Phys. Rev. C 88, 054605 (2013)

    Article  ADS  Google Scholar 

  22. D. Halderson, Phys. Rev. C 61, 034001 (2000)

    Article  ADS  Google Scholar 

  23. H. Bando et al., Int. J. Mod. Phys. A 21, 4021 (1990)

    Article  ADS  Google Scholar 

  24. G.A. Lalazissis et al., Phys. Rev. C 37, 2098 (1988)

    Article  ADS  Google Scholar 

  25. L. Majling, Nucl. Phys. A 585, 211c (1995)

    Article  ADS  Google Scholar 

  26. D.J. Millener et al., Phys. Rev. C 38, 2700 (1988)

    Article  ADS  Google Scholar 

  27. E. Botta et al., Eur. Phys. J. A 48, 41 (2012)

    Article  ADS  Google Scholar 

  28. G.A. Lalazissis, Phys. Rev. C 49, 1412 (1994)

    Article  ADS  Google Scholar 

  29. D. Lonardoni et al., Phys. Rev. C 87, 041303(R) (2013)

    Article  ADS  Google Scholar 

  30. A.O. Gattone et al., Phys. Rev. C 44, 548 (1991)

    Article  ADS  Google Scholar 

  31. N.N. Kolesnikov et al., Phys. Part. Nucl. Lett. 3, 341 (2006)

    Article  Google Scholar 

  32. Carl B. Dover et al., Nucl. Phys. A 560, 559 (1993)

    Article  ADS  Google Scholar 

  33. C. Samanta et al., J. Phys. G 32, 363 (2006)

    Article  ADS  Google Scholar 

  34. K. Thakkar et al., Proc. DAE Symp. Nucl. Phys. 56, 750 (2011)

    Google Scholar 

  35. C.G. Koutroulos, J. Phys. G: Nucl. Part. Phys. 17, 1069 (1991)

    Article  ADS  Google Scholar 

  36. B. Chakrabartiet et al., Mod. Phys. Lett. A 10, 2185 (1995)

    Article  ADS  Google Scholar 

  37. O.L. de Lange, Am. J. Phys. 59, 151 (1991)

    Article  ADS  Google Scholar 

  38. K.A. Olive et al., Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  39. B. Chakrabartiet et al., Phys. Scr. 79, 025103 (2009)

    Article  ADS  Google Scholar 

  40. T. Shinozaki et al., Phys. Rev. D 71, 074025 (2005)

    Article  ADS  Google Scholar 

  41. I. Horvath et al., Phys. Lett. 214, 237 (1988)

    Article  Google Scholar 

  42. A. Gal, Phys. Lett. B 744, 352 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Ghosh, R., Chakrabarti, B. et al. A study on binding energies of \(\Lambda\) hypernuclei. Eur. Phys. J. Plus 132, 262 (2017). https://doi.org/10.1140/epjp/i2017-11536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11536-3

Navigation