Determining the amplitude of Mercury's long period librations with the BepiColombo radio science experiment

  • Giulia Schettino
  • Stefano Cicalò
  • Giacomo Tommei
  • Andrea Milani
Regular Article
  • 29 Downloads
Part of the following topical collections:
  1. Focus Point on Highlights of Planetary Science in Italy

Abstract.

The Mercury Orbiter Radio science Experiment (MORE) is one of the experiments on-board the ESA/JAXA BepiColombo mission to Mercury. A crucial goal of MORE is to determine the gravity field and rotational state of Mercury in order to enable a better understanding of the planet's geophysics. The authors have recently reported on the results of a set of simulations of the MORE gravimetry and rotation experiments, carried out with the dedicated ORBIT14 software. Since that time, the launch date has been postponed twice, leading to a shift of more than one year in the orbital phase of the mission. Actually, the updated schedule results in a more suitable planetary configuration to determine the amplitude of the forced librations in longitude induced by Jupiter. In fact, the amplitude can be considerably enhanced due to a near-resonance with the free librations period, a key parameter to constrain the interior structure of Mercury. We show that the newest launch date allows the measurement of the long period librations amplitude forced by Jupiter with an accuracy of some tenth of arcseconds, a significant improvement with respect to the results with the previous mission schedule.

References

  1. 1.
    J. Benkhoff et al., Planet. Space Sci. 58, 2 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    A. Milani, A. Rossi, D. Vokroulicky, D. Villani, C. Bonanno, Planet. Space Sci. 49, 1579 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    N. Sánchez Ortiz, M. Belló Mora, R. Jehn, Acta Astron. 58, 236 (2006)CrossRefGoogle Scholar
  4. 4.
    L. Iess, S. Asmar, P. Tortora, Acta Astron. 65, 1597 (2009)CrossRefGoogle Scholar
  5. 5.
    S. Cicalò, A. Milani, Mon. Not. R. Acad. Sci. 427, 468 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S. Cicalò, G. Schettino, S. Di Ruzza, E.M. Alessi, G. Tommei, A. Milani, Mon. Not. R. Acad. Sci. 457, 1507 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    G. Schettino, S. Di Ruzza, F. De Marchi, S. Cicalò, G. Tommei, A. Milani, Mem. SAIt 87, 24 (2016)ADSGoogle Scholar
  8. 8.
    A. Milani, D. Vokrouhlicky, D. Villani, C. Bonanno, A. Rossi, Phys. Rev. D 66, 082001 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    A. Milani, G. Tommei, D. Vokrouhlicky, E. Latorre, S. Cicalò, in Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis, Proceedings of the International Astronomical Union, IAU Symposium, Vol. 261 (2010) pp. 356--365Google Scholar
  10. 10.
    G. Schettino, S. Cicalò, S. Di Ruzza, G. Tommei, in Metrology for Aerospace (MetroAeroSpace) (IEEE, 2015) pp. 141--145 DOI:10.1109/MetroAeroSpace.2015.7180642
  11. 11.
    F. De Marchi, G. Tommei, A. Milani, G. Schettino, Phys. Rev. D 93, 123014 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    G. Schettino, G. Tommei, Universe 2, 21 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    G. Schettino, L. Imperi, L. Iess, G. Tommei, in Proceedings of the IEEE Metrology for Aerospace (MetroAeroSpace), Florence, Italy, 22-23 June 2016 (2016) pp. 533--537, DOI:10.1109/MetroAeroSpace.2016.7573272
  14. 14.
    L. Iess, G. Boscagli, Planet. Space Sci. 49, 1597 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    V. Iafolla et al., Planet. Space Sci. 58, 300 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    E. Flamini et al., Planet. Space Sci. 58, 125 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    R. Jehn, MAS Working Paper No. 525, BC-ESC-RP-05500 (2014) Issue 5.1Google Scholar
  18. 18.
    R. Jehn, A. Rocchi, MAS Working Paper No. 608, BC-ESC-RP-50013 (2016) Issue 2.1Google Scholar
  19. 19.
    R. Jehn, MAS Working Paper No. 609, BC-ESC-RP-50014 (2016)Google Scholar
  20. 20.
    S.J. Peale, J.L. Margot, M. Yseboodt, Icarus 199, 1 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    M. Yseboodt, J.L. Margot, S.J. Peale, Icarus 207, 536 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    M. Yseboodt, A. Rivoldini, T. Van Hoolst, M. Dumberry, Icarus 226, 41 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    A. Milani, G.F. Gronchi, Theory of Orbit Determination (Cambridge University Press, 2010)Google Scholar
  24. 24.
    E.M. Alessi, S. Cicalò, A. Milani, G. Tommei, Mon. Not. R. Acad. Sci. 423, 2270 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Peale, in Mercury (Tucson, AZ, University of Arizona Press, 1988) pp. 461--493 (A89-43751 19-91)Google Scholar
  26. 26.
    J.L. Margot et al., J. Geophys. Res. 117, E00L09 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Stark et al., Geophys. Res. Lett. 42, 7881 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Kozai, Astron. J 17, 395 (1965)ADSGoogle Scholar
  29. 29.
    E.M. Alessi, S. Cicalò, A. Milani, Accelerometer data handling for the BepiColombo orbit determination, in Dynamics and Control of Space Systems DyCoSS'2012, edited by A.D. Guerman, P.M. Bainum, J.-M. Contact, Advances in the Astronautical Sciences, Vol. 145 (AAS, 2012) AAS 12-309Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Giulia Schettino
    • 1
  • Stefano Cicalò
    • 2
  • Giacomo Tommei
    • 3
  • Andrea Milani
    • 3
  1. 1.IFAC - CNRSesto Fiorentino (FI)Italy
  2. 2.Space Dynamics Services s.r.l.Cascina (PI)Italy
  3. 3.Department of MathematicsUniversity of PisaPisaItaly

Personalised recommendations