Skip to main content
Log in

Investigating the foil-generated deuteron beam interaction with a DT target in degenerate and classical plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Deuteron fast ignition of a conically guided pre-compressed DT fuel is investigated. For this purpose, the acceleration of the deuterated thin foil by the intense laser beam is evaluated. The acceleration values and the number of foil-generated deuterons are calculated in terms of the laser pulse duration. Using the created deuterons as the fast ignitors, we investigate the fast ignition scheme by comparing fully degenerate, partial degenerate and classical types of DT plasma. The total energy gain of deuterons “beam fusion” is calculated to show the efficiency of beam reactions in increasing fusion rate. Besides, the stopping time and stopping range of incident deuterons are evaluated. Our numerical results indicate that degeneracy increases the beam-target collisions. Thus, it prepares the ignition situation sooner than the classical plasma. Moreover, the number of generated deuterons and their acceleration depend on the foil thickness and laser parameters. We show that when a 4ps laser with intensity of \( 10^{19}\) W/cm^2 focused onto a 20μm foil, \( 35\times 10^{15}\) deuterons are generated. Moreover, under our analysis, in order to have a practicable fast ignition, 18% of the laser energy is necessary to convert into a deuteron driver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Khoshbinfar, Int. J. Mod. Phys. E 23, 11 (2014)

    Article  Google Scholar 

  2. M. Tabak et al., Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  3. S. Jafari et al., Eur. Phys. J. Plus 131, 188 (2016)

    Article  Google Scholar 

  4. T. Kluge et al., Phys. Rev. Lett. 107, 205003 (2011)

    Article  ADS  Google Scholar 

  5. A. Ghasemizad et al., Pramana J. Phys. 83, 3 (2014)

    Article  Google Scholar 

  6. M. Roth et al., Phys. Rev. Lett. 86, 436 (2001)

    Article  ADS  Google Scholar 

  7. M. Temporal, Phys. Plasmas 13, 122704 (2006)

    Article  ADS  Google Scholar 

  8. J.C. Fernandez et al., Nucl. Fusion 49, 065004 (2009)

    Article  ADS  Google Scholar 

  9. D.X. Liu et al., Plasma Phys. Control. Fusion 53, 035022 (2011)

    Article  ADS  Google Scholar 

  10. G. Cuttone et al., Eur. Phys. J. Plus 126, 65 (2011)

    Article  Google Scholar 

  11. O. Culfa et al., Laser Part. Beams 1, 6 (2016)

    Google Scholar 

  12. J.T. Morrison et al., Phys. Plasmas 19, 030707 (2012)

    Article  ADS  Google Scholar 

  13. A.G. Krygier et al., Phys. Plasmas 21, 023112 (2014)

    Article  ADS  Google Scholar 

  14. Y. Xiaoling et al., Fusion Sci. Technol. 60, 615 (2011)

    Google Scholar 

  15. A. Ghasemizad et al., Nucl. Instrum. Methods Phys. Res. B 269, 2514 (2011)

    Article  ADS  Google Scholar 

  16. P. Mulser et al., Laser Part. Beams 22, 157 (2004)

    ADS  Google Scholar 

  17. S. Eliezer et al., Phys. Lett. A 289, 135 (2001)

    Article  ADS  Google Scholar 

  18. D. Jung et al., Phys. Rev. Lett. 107, 115002 (2011)

    Article  ADS  Google Scholar 

  19. M. Allen et al., Phys. Rev. Lett. 93, 265004 (2004)

    Article  ADS  Google Scholar 

  20. J. Schreiber et al., Appl. Phys. B 79, 1041 (2004)

    Article  ADS  Google Scholar 

  21. B.M. Hegelich et al., Nucl. Fusion 51, 083011 (2011)

    Article  ADS  Google Scholar 

  22. S. Steinke et al., Laser Part. Beams 28, 215 (2010)

    Article  ADS  Google Scholar 

  23. S.P. Hatchett et al., Phys. Plasmas 7, 2076 (2000)

    Article  ADS  Google Scholar 

  24. L. Yin et al., Phys. Plasmas 18, 063103 (2011)

    Article  ADS  Google Scholar 

  25. M. Roth, M. Schollmeier, CERN Yellow Report No. 1, 231 (2016)

    Google Scholar 

  26. J. Honrubia et al., Laser Part. Beams 24, 217 (2006)

    ADS  Google Scholar 

  27. J. Davis et al., Plasma Phys. Control. Fusion 53, 045013 (2011)

    Article  ADS  Google Scholar 

  28. X. Yang et al., Phys. Plasmas 18, 032703 (2011)

    Article  ADS  Google Scholar 

  29. Pablo T. León et al., Phys. Lett. A 343, 181 (2005)

    Article  ADS  Google Scholar 

  30. M. Mehrangiz et al., Commun. Theor. Phys. 65, 761 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mehrangiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrangiz, M., Ghasemizad, A. Investigating the foil-generated deuteron beam interaction with a DT target in degenerate and classical plasma. Eur. Phys. J. Plus 132, 270 (2017). https://doi.org/10.1140/epjp/i2017-11525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11525-6

Navigation