Advertisement

Effect of vertical quasi-periodic vibrations on the stability of the free surface of a fluid layer

  • Mohamed Yagoubi
  • Saïd Aniss
Regular Article
  • 35 Downloads

Abstract.

In this paper we examine the effect of vertical quasi-periodic oscillations on the stability of the free surface of a horizontal liquid layer. The quasi-periodic motion considered here is characterized by two incommensurate frequencies, \( \Omega_{1}\) and \( \Omega_{2}\) , i.e. the ratio \( \omega=\Omega_{2}/\Omega_{1}\) is irrational. The linear quasi-periodic oscillator, corresponding to the governing equations of the Faraday instability, is treated using the harmonic balance method developed by Rand et al. and Zounes and Rand, and by numerical methods using the Floquet analysis and knowing that an irrational number can be approximated by a rational number. We determine the marginal stability curves in terms of reduced amplitude forcing and wave number for inviscid and viscous liquids. For both cases, we show that the neutral stability curves depend strongly on the frequency ratio of oscillations, \( \omega\), when this parameter is below \( \sqrt{2}\). Beyond this value, there is no effect of \( \omega\) and the first resonance occurs always at the wave number corresponding to the value of the natural frequency squared, \( \delta=0.25\). Below the value \( \omega=\sqrt{2}\), variations of the wave number as a function of \( \omega\) and \( \Omega_{1}^{}\) are presented for the inviscid case. However, for the viscous case, we show the existence of the bicritical points and we present the instability threshold versus \( \Omega_{1}^{}\) for different values of \( \omega\).

References

  1. 1.
    M. Faraday, Philos. Trans. R. Soc. London 121, 319 (1831)Google Scholar
  2. 2.
    L. Matthiessen, Ann. Phys. 134, 107 (1868)CrossRefGoogle Scholar
  3. 3.
    L. Matthiessen, Ann. Phys. 141, 375 (1870)CrossRefGoogle Scholar
  4. 4.
    L. Rayleigh, Philos. Mag. 15, 235 (1883)CrossRefGoogle Scholar
  5. 5.
    L. Rayleigh, Philos. Mag. 16, 50 (1883)CrossRefGoogle Scholar
  6. 6.
    T.B. Benjamin, F. Ursell, Proc. R. Soc. London A 255, 505 (1954)ADSCrossRefGoogle Scholar
  7. 7.
    W.S. Edwards, S. Fauve, Phys. Rev. E 47, 788 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    W.S. Edwards, S. Fauve, J. Fluid Mech. 278, 123 (1994)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Périnet, D. Juric, Laurette S. Tuckerman, J. Fluid Mech. 635, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    N.O. Rojas, M. Argentina, E. Cerda, E. Tirapegui, Eur. Phys. J. D 62, 25 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    H.W. Müller, Phys. Rev. Lett. 71, 3287 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    C. Wagner, H.W. Müller, K. Knorr, Phys. Rev. E 68, 066204 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    A. Kudrolli, B. Pier, J.P. Gollub, Physica D 123, 99 (1998)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Arbell, J. Fineberg, Phys. Rev. Lett. 81, 4384 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    H. Arbell, J. Fineberg, Phys. Rev. Lett. 85, 756 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    H. Arbell, J. Fineberg, Phys. Rev. Lett. 84, 654 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    H. Arbell, J. Fineberg, Phys. Rev. E 65, 036224 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    T. Epstein, J. Fineberg, Phys. Rev. Lett. 92, 244502 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    T. Epstein, J. Fineberg, Phys. Rev. Lett. 100, 134101 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Thomas Besson, W.S. Edwards, Laurette S. Tuckerman, Phys. Rev. E 54, 507 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    K. Kumar, L.S. Tuckerman, J. Fluid Mech. 279, 49 (1994)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Silber, A.C. Skeldon, Phys. Rev. E 59, 5446 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    M. Silber, C.M. Topaz, A.C. Skeldon, Physica D 143, 205 (2000)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    D.P. Tse, A.M. Rucklidge, R.B. Hoyle, M. Silber, Physica D 146, 367 (2000)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J. Porter, M. Silber, Phys. Rev. Lett. 89, 084501 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    J. Porter, M. Silber, Physica D 190, 93 (2004)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    C.M. Topaz, M. Silber, Physica D 172, 1 (2002)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    C.M. Topaz, J. Porter, M. Silber, Phys. Rev. E 70, 066206 (2004)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    W. Zhang, J. Vinals, J. Fluid Mech. 341, 225 (1997)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A.C. Skeldon, G. Guidoboni, SIAM J. Appl. Math. 67, 1064 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    W. Zhang, J. Vinls, J. Fluid Mech. 336, 301 (1997)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    J. Beyer, R. Friedrich, Phys. Rev. E 51, 1162 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    D.D. Joseph, T. Funada, J. Wang, Potential Flows of Viscous and Viscoelastic Fluids (Cambridge University Press, 2007) pp. 197--214Google Scholar
  34. 34.
    R. Rand, R.R. Zounes, R. Hastings, Dynamics of a Quasiperiodically Forced Mathieu Oscillator, in Nonlinear Dynamics: The Richard Rand 50th Anniversary Volume, edited by A. Guran (World Scientific, 1997) chapt. 9Google Scholar
  35. 35.
    R.S. Zounes, R. Rand, SIAM J. Appl. Math. 58, 1094 (1998)MathSciNetCrossRefGoogle Scholar
  36. 36.
    T. Boulal, S. Aniss, M. Belhaq, R. Rand, Phys. Rev. E 76, 056320 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    T. Boulal, S. Aniss, M. Belhaq, A. Azouani, Int. J. Non-Linear Mech. 43, 852 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    L.N. Trefethen, Spectral Methods in Matlab (SIAM, Philadelphia, 2000)Google Scholar
  39. 39.
    A.C. Weideman, S.C. Reddy, ACM Trans. Math. Softw. 26, 465 (2000)CrossRefGoogle Scholar
  40. 40.
    L. Yikai, U. Akira Umemura, J. Fluid Mech. 759, 73 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory of Mechanics, Faculty of Sciences Aïn ChockUniversity Hassan IICasablancaMorocco

Personalised recommendations