Dynamical and fractal properties in periodically forced stretch-twist-fold (STF) flow

  • Muhammad Aqeel
  • Salman Ahmad
  • Anam Azam
  • Faizan Ahmed
Regular Article


The periodically forced stretch-twist-fold (STF) flow is introduced in this article. The nonlinear behavior of the STF flow with periodic force along the y -axis is investigated analytically and numerically. The STF flow is a prototype of the dynamo theory that proposes a mechanism of magnetic field generation continuously. The stability analysis is done by Routh Huwritz criteria and Cardano method. Chasing chaos through numerical simulation is determined to demonstrate the chaotic behavior of the forced STF flow. With the help of fractal processes based on the forced STF flow, a multi-wing forced STF flow is obtained that gives a n -wing forced STF flow system.


  1. 1.
    J. Lu, G. Chen, S. Zhang, Chaos, Solitons Fractals 14, 669 (2002)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Mauro Bologna, Eur. Phys. J. Plus 131, 386 (2016)CrossRefGoogle Scholar
  3. 3.
    Q. Gao, J. Ma, Nonlinear Dyn. 58, 209 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Aqeel, S. Ahmad, Nonlinear Dyn. 84, 755 (2015)CrossRefGoogle Scholar
  5. 5.
    S.H. Strogatz, Nonlinear Dynamics and Chaos: With Application to Physics, Biology, Chemistry, and Engineering (Westview, New York, 2000)Google Scholar
  6. 6.
    S.T. Kingni, S. Jafari, H. Simo, P. Woafo, Eur. Phys. J. Plus 129, 76 (2014)CrossRefGoogle Scholar
  7. 7.
    E.N. Lorenz, J. At. Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  8. 8.
    O.E. Rossler, Phys. Lett. A 57, 397 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    J.C. Sprott, Phys. Rev. E 50, 647 (1994)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    G.R. Chen, T. Ueta, Int. J. Bifurcat. Chaos 9, 1465 (1999)CrossRefGoogle Scholar
  11. 11.
    K. Bajer, H.K. Moffatt, J. Fluid Mech. 212, 337 (1990)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    E.N. Lorenz, Tellus 43, 505 (1982)ADSGoogle Scholar
  13. 13.
    T.N. Palmer, J. Clim. 12, 575 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    S. Corti, F. Molteni, T.N. Palmer, Nature 398, 799 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    A.K. Mittal, S. Dwivedi, A.C. Panedy, Ind. J. Radio Space Phys. 32, 209 (2003)Google Scholar
  16. 16.
    Dibakar Ghosh, R. Anirban, A.R. Chowdhury, J. Comput. Nonlinear Dyn. 5, 1 (2010)Google Scholar
  17. 17.
    K.M. Ashok, M. Sandipan, P.S. Ravi, Commun. Nonlinear Sci. Numer. Simulat. 16, 787 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Khatiwala, B.E. Shaw, M.A. Cane, Geophys. Res. Lett. 28, 2633 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    H. Debin, Prog. Theor. Phys. 112, 785 (2004)CrossRefGoogle Scholar
  20. 20.
    G.L. Feng, W.P. He, Chin. Phys. 16, 2825 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    S.I. Vainshtein, Y.A.B. Zel'dovich, Sov. Phys. Usp. 15, 159 (1972)ADSCrossRefGoogle Scholar
  22. 22.
    H.K. Moffatt, M.R.E. Proctor, J. Fluid Mech. 154, 493 (1985)ADSCrossRefGoogle Scholar
  23. 23.
    K. Bajer, H.K. Moffatt, F.H. Nex, In. H.K. Moffatt, Topological Fluid Mechanics, Proceedings of the IUTAM Symposium, edited by A. Tsinober (Cambridge University Press, Cambridge, 1990)Google Scholar
  24. 24.
    T. Zhou, Y. Tang, G. Chen, Int. J. Bifurcat. Chaos 9, 3167 (2001)Google Scholar
  25. 25.
    Christopher P. Silva, IEEE Trans. Circuits Syst. I. Fundam. Theory 40, 675 (1993)CrossRefGoogle Scholar
  26. 26.
    Z. Zheng, G. Chen, J. Math Anal. Appl. 315, 106 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R. Miranda, Phys. Lett. A 178, 105 (1993)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    R.L. Borrelli, C.S. Coleman, Differential Equations, fourth edition (John Wiley and Sons, Inc., New York, 1998)Google Scholar
  29. 29.
    W.E. Boyce, R.C. Diprima, Elementary Differential Equations and Boundary Value Problems, eight edition (John Wiley and Sons, Inc., United States of America, 2010)Google Scholar
  30. 30.
    R. Zhang, G. Sun, The Second International Conference on Intelligent Control and Information Processing (ICICIP), Vol. 1 (IEEE, 2011) p. 177Google Scholar
  31. 31.
    J. Mikolajski, E. Schmeidel, Opuscula Math. 26, 343 (2006)MathSciNetGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Applied Mathematics & StatisticsInstitute of Space TechnologyIslamabadPakistan

Personalised recommendations