Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity

Regular Article

Abstract.

In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.

References

  1. 1.
    W. Mahmoud, A.F. Ghaleb, E.K. Rawy, H.A.Z. Hassan, A. Mosharafa, Arch. Appl. Mech. 84, 1501 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    W. Mahmoud, A.F. Ghaleb, E.K. Rawy, H.A.Z. Hassan, A. Mosharafa, Arch. Appl. Mech. 85, 433 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    E.K. Rawy, L. Iskandar, A.F. Ghaleb, J. Comput. Appl. Math. 100, 53 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A.N. Abd-Alla, A.F. Ghaleb, G.A. Maugin, Int. J. Eng. Sci. 32, 1103 (1994)CrossRefGoogle Scholar
  5. 5.
    S.M. Abo-Dahab, K.h. Lotfy, J. Comput. Theor. Nanosci. 12, 1869 (2015)CrossRefGoogle Scholar
  6. 6.
    S.H. Wu, H. Chen, W.X. Li, Acta Math. Sci. 28B, 101 (2008)ADSGoogle Scholar
  7. 7.
    S.M. Zheng, Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems (CRC Press, 1995)Google Scholar
  8. 8.
    M. Grasselli, H. Petzeltov, G. Schimperna, Commun. Pure Appl. Anal. 5, 827 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J.E.M. Rivera, R.K. Barreto, Nonlinear Anal. 31, 149 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M.E. Khalifa, Appl. Math. Comput. 145, 569 (2003)MathSciNetGoogle Scholar
  11. 11.
    D. Sun, V.S. Manoranjan, Yin Hong-Ming, Numerical solutions for a coupled parabolic equations arising induction heating processes, in Discrete and Continuous Dynamical Systems (AIM, 2007) pp. 956--964Google Scholar
  12. 12.
    X. Cui, Numer. Math. 23, 237 (2001)Google Scholar
  13. 13.
    J.L. Liu, Numer. Math. 4, 260 (1982)Google Scholar
  14. 14.
    X.Z. Liu, X. Cui, J.G. Sun, J. Comput. Appl. Math. 186, 432 (2006)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    N.H. Sweilam, J. Comput. Appl. Math. 207, 64 (2007)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    N.H. Sweilam, M.M. Khader, Chaos, Solitons Fractals 32, 145 (2007)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)Google Scholar
  18. 18.
    R. Herrmann, Fractional Calculus, an Introduction for Physicists (World Scientific Publishing Co. Pte. Ltd., 2011)Google Scholar
  19. 19.
    Y. Povstenko, Fractional Thermoelasticity, Solid Mechanics and Its Applications (Springer International Publishing, Switzerland, 2015)Google Scholar
  20. 20.
    A.I. Abbas, J. Phys. 1, 24 (2012)Google Scholar
  21. 21.
    R.C. Koeller, J. Appl. Mech. 51, 229 (1984)MathSciNetCrossRefGoogle Scholar
  22. 22.
    D.A. Benson, S.W. Wheatcraft, M M. Meerschaert, Water Resour. Res. 36, 1403 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    V. Daftardar-Gejji, H. Jafari, Appl. Math. Comput. 189, 541 (2007)MathSciNetGoogle Scholar
  24. 24.
    F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, V. Anh, Siam J. Numer. Anal. 52, 2599 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    F. Zeng, F. Liu, V. Anh, J. Comput. Appl. Math. 206, 1098 (2007)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Ciesielski, J. Leszczynski, J. Theor. Appl. Mech. 44, 393 (2006)Google Scholar
  27. 27.
    M. Ciesielski, J. Leszczynski, Signal Process. 86, 2503 (2006)CrossRefGoogle Scholar
  28. 28.
    N.H. Sweilam, M.M. Abou Hasan, Prog. Fract. Differ. Appl. 2, 231 (2016)CrossRefGoogle Scholar
  29. 29.
    V.J. Ervin, J.P. Roop, Numer. Methods Partial Differ. Equ. 22, 558 (2006)CrossRefGoogle Scholar
  30. 30.
    A. Golbabai, K. Sayevand, Math. Comput. Model. 53, 1708 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Cenesiz, Y. Keskin, A. Kurnaz, J. Franklin Inst. 347, 452 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    N.H. Sweilam, A.M. Nagy, A. El-Sayed Adel, Chaos, Solitons Fractals 73, 141 (2015)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    N.H. Sweilam, M.M. Abou Hasan, Eur. Phys. J. Plus 131, 251 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Das, Comput. Math. Appl. 57, 483 (2009)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Y. Yan, K. Pal, N.J. Ford, BIT Numer. Math. 54, 555 (2014)CrossRefGoogle Scholar
  36. 36.
    R.E. Mickens, Numer. Methods Partial Differ. Equ. 5, 313 (1989)CrossRefGoogle Scholar
  37. 37.
    R.E. Mickens, Nonstandard finite difference model of differential equations (World Scientific, Singapore, 1994)Google Scholar
  38. 38.
    R.E. Mickens, Numer. Methods Partial Differ. Equ. Fractals 15, 201 (1999)CrossRefGoogle Scholar
  39. 39.
    R.E. Mickens, Applications of nonstandard finite difference schemes (World Scientific, 2000)Google Scholar
  40. 40.
    R.E. Mickens, J. Differ. Equ. Appl. 8, 823 (2002)CrossRefGoogle Scholar
  41. 41.
    A.J. Arenas, G. González-Parrab, B.M. Chen-Charpentier, Math. Comput. Simulat. 121, 48 (2016)CrossRefGoogle Scholar
  42. 42.
    N.H. Sweilam, T.F. Almajbri, Prog. Fract. Differ. Appl. 1, 123 (2015)Google Scholar
  43. 43.
    R.E. Mickens, T.M. Washington, J. Differ. Equ. Appl. 18, 525 (2010)CrossRefGoogle Scholar
  44. 44.
    D. Zhu, S. Kinoshita, D. Cai, J.B. Cole, Phys. Rev. E 80, 051924 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    K. Moaddy, S. Momani, I. Hashim, Comput. Math. Appl. 61, 1209 (2011)MathSciNetCrossRefGoogle Scholar
  46. 46.
    S. Banerjee, J.B. Cole, T. Yatagai, Opt. Rev. 12, 274 (2005)CrossRefGoogle Scholar
  47. 47.
    S. Elsheikh, R. Ouifki, K.C. Patidar, J. Differ. Equ. Appl. 20, 354 (2014)CrossRefGoogle Scholar
  48. 48.
    S. Moghadas, M. Alexander, B. Corbett, Physica D 188, 134 (2004)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    K. Moaddy, A.G. Radwan, K.N. Salama, S. Momani, I. Hashim, Comput. Math. Appl. 64, 3329 (2012)MathSciNetCrossRefGoogle Scholar
  50. 50.
    K. Moaddy, I. Hashim, S. Momani, Comput. Math. Appl. 62, 1068 (2011)MathSciNetCrossRefGoogle Scholar
  51. 51.
    A. Nagy, N.H. Sweilam, Phys. Lett. A 378, 1980 (2014)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    G.D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, in Oxford Applied Mathematics and Computing Science Series (1985)Google Scholar
  53. 53.
    N.H. Sweilam, M.M. Khader, M. Adel, J. Fract. Differ. Calc. 2, 17 (2012)CrossRefGoogle Scholar
  54. 54.
    S.B. Yuste, J. Comput. Phys. 216, 264 (2006)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    N.H. Sweilam, A.T. Assiri, M.M. Abou Hasan, Numer. Methods Partial Differ. Equ. (2016) DOI:10.1002/num.22117
  56. 56.
    N.H. Sweilam, M.M. Abou Hasan, Adv. Appl. Math. Mech. 9, 990 (2017)MathSciNetCrossRefGoogle Scholar
  57. 57.
    S. Jiang, Computing 44, 147 (1990)MathSciNetCrossRefGoogle Scholar
  58. 58.
    S. Jiang, J. Comput. Appl. Math. 34, 135 (1991)MathSciNetCrossRefGoogle Scholar
  59. 59.
    N.H. Sweilam, M.M. Khader, Comput. Math. Appl. 58, 2134 (2009)MathSciNetCrossRefGoogle Scholar
  60. 60.
    B.P. Demidovich, I.A. Maron, Computational Mathematics (Mir Publishers, Moscow, 1987) English translationGoogle Scholar
  61. 61.
    G.D. Smith, Numerical Solution of Partial Differential Method second ed. (Oxford University Press, 1978)Google Scholar
  62. 62.
    S.B. Yuste, L. Acedo, SIAM J. Numer. Anal. 42, 1862 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations