Numerical study of streamwise and cross flow in the presence of heat and mass transfer

  • Rizwan-ul-Haq
  • Feroz Ahmed Soomro
  • Z. H. Khan
  • Qasem M. Al-Mdallal
Regular Article
  • 48 Downloads

Abstract.

The present model is devoted to investigate the streamwise and cross flow of a viscous fluid over a heated moving surface. Viscous dissipation effects are also considered with heat and mass transfer effects and these effects with cross flow have not been explored yet in the literature. Governing boundary layer equations consist in the form of nonlinear partial differential equations (PDEs). Compatible transformations are applied to change such equations into ordinary differential equations which are further solved using the Runge-Kutta technique and shooting method. Linear stability analysis is also performed over the obtained solutions to validate the results and to determine the smallest eigenvalues. Three different kinds of fluids namely: acetone, water and ethaline glycol are investigated to analyse the heat transfer rate. The problem contains important physical parameters namely: Prandtl number, Eckert numbers and Lewis number. The obtained solutions are discussed in detail against each physical parameter using graphs and tables.

References

  1. 1.
    Robert T. Jones, Effects of sweepback on boundary layer and separation, Report no. 884 (National Advisory Committee for Aeronautics, 1947)Google Scholar
  2. 2.
    Artur Mager, J. Aeronaut. Sci. 21, 835 (1954)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Henk G. Loos, J. Aeronaut. Sci. 22, 35 (1955)CrossRefGoogle Scholar
  4. 4.
    Tsung Yen Na, Arthur G. Hansen, Int. J. Non-Linear Mech. 2, 373 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    Halit Karabulut, O. Ercan Ataer, Int. J. Heat Mass Transfer 41, 2677 (1998)CrossRefGoogle Scholar
  6. 6.
    Tiegang Fang, Chia-fon F. Lee, Acta Mech. 204, 235 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Uranga, P.-O. Persson, M. Drela, J. Peraire, Preliminary investigation into the effects of cross-flow on low Reynolds number transition, in 20th AIAA Computational Fluid Dynamics Conference, Hawaii (2011), June 27-30 (2011)Google Scholar
  8. 8.
    Krishnendu Bhattacharayya, Ion Pop, Chin. Phys. B 23, 024701 (2014)CrossRefGoogle Scholar
  9. 9.
    Rizwan Ul Haq, Z.H. Khan, W.A. Khan, Inayat Ali Shah, Int. J. Chem. React. Eng. (2016) DOI:10.1515/ijcre-2016-0059
  10. 10.
    N.A. Cumpsty, Crossflow in turbulent boundary layers, Ministry of Technology Aeronautical Research Council Current Papers (1970)Google Scholar
  11. 11.
    P.D. Weidman, Z. Angew. Math. Phys. 48, 341 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    R. Mittal, P. Rampunggoon, H.S. Udaykumar, Interaction of a synthetic jet with a flat plate boundary layer (American Institute of Aeronautics and Astronautics, 2001)Google Scholar
  13. 13.
    Lars-Uve Schrader, Luca Bradt, Dan S. Henningson, J. Fluid Mech. 618, 209 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    S.J. Garrett, Z. Hussain, S.O. Stephen, J. Fluid Mech. 622, 209 (2009)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Francesca De Santi, Stefania Scarsoglio, William O. Criminale, Daniela Tordella, Perturbed cross-flow boundary layer: nontrivial effects of the obliquity angle at small and high Reynolds numbers, in 14th European Turbulence Conference, France (2013)Google Scholar
  16. 16.
    Sertac Cadirci, Hasan Gunes, Ulrich Rist, Eur. J. Mech. B/Fluids 44, 42 (2014)CrossRefGoogle Scholar
  17. 17.
    Francesca De Santi, Stefania Scarsoglio, William O. Criminale, Daniela Tordella, Int. J. Heat Fluid Flow 52, 64 (2015)CrossRefGoogle Scholar
  18. 18.
    J.H. Merkin, J. Eng. Math. 20, 171 (1986)CrossRefGoogle Scholar
  19. 19.
    P.D. Weidman, D.G. Kubitschek, A.M.J. Davis, Int. J. Eng. Sci. 44, 730 (2006)CrossRefGoogle Scholar
  20. 20.
    A. Postelnicu, I. Pop, Appl. Math. Comput. 217, 4359 (2011)MathSciNetGoogle Scholar
  21. 21.
    Z. Hussain, S.J. Garrett, S.O. Stephen, J. Fluid Mech. 755, 274 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Hussain, S.J. Garrett, S.O. Stephen, P.T. Griffiths, J. Fluid Mech. 788, 70 (2016)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    P.D. Towers, Z. Hussain, P.T. Griffiths, S.J. Garrett, IMA J. Appl. Math. 81, 940 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    T.Y. Na, Computational Methods in Engineering Boundary Value Problem (Academic Press, New York, 1979)Google Scholar
  25. 25.
    T. Cebeci, P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer (Springer-Verlag, New York, 1984)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringBahria UniversityIslamabadPakistan
  2. 2.Department of MathematicsNanjing UniversityNanjingChina
  3. 3.Department of MathematicalUniversity of Malakand, Dir (Lower)Khyber PakhtunkhwaPakistan
  4. 4.Department of Mathematical SciencesUAE UniversityAl AinUnited Arab Emirates

Personalised recommendations