Advertisement

Power, efficiency, ecological function and ecological coefficient of performance of an irreversible Dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid

Regular Article

Abstract.

Finite time thermodynamic (FTT) theory is applied to perform performance analysis for an air-standard irreversible Dual-Miller cycle (DMC) based on the power output (P), thermal efficiency (\(\eta\), ecological function (E) and ecological coefficient of performance (ECOP) criteria by considering nonlinear variable specific heat ratio, piston friction loss, heat transfer loss and other internal irreversible losses. Relationships between different performance characteristics are obtained via numerical calculations. Effects of pressure ratio and stroke length on each criterion are analyzed, and performance characteristics with different optimization objective are compared. The results show that pressure ratio has little influence on performance characteristics, but stroke length has great influence on performance characteristics. Moreover P, \(\eta\), E and ECOP decrease with increasing stroke length, but when stroke length increases to a certain value, E is less than 0 whatever value of compression ratio takes. Choosing the E and ECOP as optimization objectives is more significant by comparing with other performance indexes.

References

  1. 1.
    B. Andresen, R.S. Berry, M.J. Ondrechen, P. Salamon, Acc. Chem. Res. 17, 266 (1984)CrossRefGoogle Scholar
  2. 2.
    R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsirlin, Thermodynamic Optimization of Finite Time Processes (Wiley, Chichester, 1999)Google Scholar
  3. 3.
    L.G. Chen, C. Wu, F.R. Sun, J. Non-Equilib. Thermodyn. 24, 327 (1999)ADSGoogle Scholar
  4. 4.
    C. Wu, L.G. Chen, J.C. Chen, Recent Advances in Finite Time Thermodynamics (Nova Science Publishers, New York, 1999)Google Scholar
  5. 5.
    L.G. Chen, F.R. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization (Nova Science Publishers, New York, 2004)Google Scholar
  6. 6.
    L.G. Chen, Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles (High Education Press, Beijing, 2005) (in Chinese)Google Scholar
  7. 7.
    A. Bejan, J. Appl. Phys. 79, 1191 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Ust, B. Sahin, T. Yilmaz, Proc. IMechE Part A 221, 447 (2007)CrossRefGoogle Scholar
  9. 9.
    F.K. Meng, L.G. Chen, F.R. Sun, B. Yang, Energy 66, 965 (2014)CrossRefGoogle Scholar
  10. 10.
    B. Yang, L.G. Chen, Y.L. Ge, F.R. Sun, Int. J. Exergy 14, 459 (2014)CrossRefGoogle Scholar
  11. 11.
    B. Xiong, L.G. Chen, F.K. Meng, F.R. Sun, Energy 77, 562 (2014)CrossRefGoogle Scholar
  12. 12.
    Z.M. Ding, L.G. Chen, F.R. Sun, J. Energy Inst. 88, 169 (2015)CrossRefGoogle Scholar
  13. 13.
    Z.M. Ding, L.G. Chen, F.R. Sun, J. Energy Inst. 88, 36 (2015)CrossRefGoogle Scholar
  14. 14.
    X.Y. Qin, L.G. Chen, Y.L. Ge, F.R. Sun, Physica A 436, 788 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Z.M. Ding, L.G. Chen, W.H. Wang, Y.L. Ge, F.R. Sun, Physica A 431, 94 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    X.H. Wu, L.G. Chen, F.R. Sun, Appl. Math. Model. 39, 1689 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    L.G. Chen, X.H. Wu, Q.H. Xiao, Y.L. Ge, F.R. Sun, Environ. Eng. Manag. J. 14, 2341 (2015)Google Scholar
  18. 18.
    Z.M. Ding, L.G. Chen, Y.L. Ge, F.R. Sun, Environ. Eng. Manag. J. 14, 97 (2015)Google Scholar
  19. 19.
    L.G. Chen, B. Yang, X. Shen, Z.H. Xie, F.R. Sun, Appl. Therm. Eng. 86, 151 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Zhang, L.G. Chen, F.R. Sun, Physica A 445, 221 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Z.M. Ding, L.G. Chen, Y.L. Ge, F.R. Sun, Physica A 447, 49 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    B. Yang, L.G. Chen, F.R. Sun, J. Energy Inst. 89, 1 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    C. Wang, L.G. Chen, S.J. Xia, F.R. Sun, Energy 99, 152 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.H. Yu, Z.M. Ding, L.G. Chen, W.H. Wang, F.R. Sun, Energy 107, 287 (2016)CrossRefGoogle Scholar
  25. 25.
    J.L. Zhou, L.G. Chen, Z.M. Ding, F.R. Sun, Energy 111, 306 (2016)CrossRefGoogle Scholar
  26. 26.
    C. Wang, L.G. Chen, S.J. Xia, F.R. Sun, J. Non-Equilibr. Thermodyn. 41, 313 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    L.G. Chen, H.J. Feng, Z.H. Xie, Entropy 18, 353 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Yin, L.G. Chen, F. Wu, Eur. Phys. J. Plus 132, 45 (2017)CrossRefGoogle Scholar
  29. 29.
    Y.H. Bi, L.G. Chen, Finite Time Thermodynamic Optimization for Air Heat Pumps (Science Press, Beijing, 2017) (in Chinese)Google Scholar
  30. 30.
    F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)ADSCrossRefGoogle Scholar
  31. 31.
    J. Li, L.G. Chen, Y.L. Ge, F.R. Sun, Act. Phys. Sin. 62, 130501 (2013) (in Chinese)Google Scholar
  32. 32.
    M.H. Ahmadi, M.A. Ahmadi, S.A. Sadatsakkak, Renew. Sustain. Energy Rev. 51, 1055 (2015)CrossRefGoogle Scholar
  33. 33.
    X.Y. Qin, L.G. Chen, Y.L. Ge, F.R. Sun, Ara. J. Sci. Eng. 38, 405 (2013)CrossRefGoogle Scholar
  34. 34.
    P.A. Ngouateu Wouagfack, R. Tchinda, Renew. Sustain. Energy Rev. 21, 524 (2013)CrossRefGoogle Scholar
  35. 35.
    L.G. Chen, F.K. Meng, F.R. Sun, Tech. Sci. 59, 442 (2016)Google Scholar
  36. 36.
    Z.M. Ding, L.G. Chen, W.W. Wang, F.R. Sun, Sci. Sin.: Tech. 45, 889 (2015) (in Chinese)CrossRefGoogle Scholar
  37. 37.
    E. Acikkalp, N. Caner, Eur. Phys. J. Plus 130, 93 (2015)CrossRefGoogle Scholar
  38. 38.
    M.H. Ahmadi, M.A. Ahmadi, F. Pourfayaz, Eur. Phys. J. Plus 130, 190 (2015)CrossRefGoogle Scholar
  39. 39.
    J.L. Zhou, L.G. Chen, Z.M. Ding, F.R. Sun, Eur. Phys. J. Plus 131, 149 (2016)CrossRefGoogle Scholar
  40. 40.
    H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Eur. Phys. J. Plus 131, 274 (2016)CrossRefGoogle Scholar
  41. 41.
    P. Salamon, J.D. Nulton, G Siragusa, T.R. Andresen, A. Limon, Energy 26, 307 (2001)CrossRefGoogle Scholar
  42. 42.
    K.H. Hoffman, J. Burzler, A. Fischer, M. Schaller, S. Schubert, J. Non-Equilib. Thermodyn. 28, 233 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    S. Sieniutycz, Prog. Energy Combust. Sci. 29, 193 (2003)CrossRefGoogle Scholar
  44. 44.
    B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)CrossRefGoogle Scholar
  45. 45.
    S. Sieniutycz, J. Jezowski, Energy Optimization in Process Systems and Fuel Cells (Elsevier, Oxford, UK, 2013)Google Scholar
  46. 46.
    L.G. Chen, S.J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes (Science Press, Beijing, 2016) (in Chinese)Google Scholar
  47. 47.
    L.G. Chen, S.J. Xia, J. Li, Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles (Science Press, Beijing, 2016) (in Chinese)Google Scholar
  48. 48.
    S. Petrescu, M. Costea, Development of Thermodynamics with Finite Speed and Direct Method (Editura AGIR, Bucuresti, 2012)Google Scholar
  49. 49.
    A. Medina, P.L. Curto-Risso, A. Calvo-Hernández, L. Guzmán-Vargas, F. Angulo-Brown, A.K. Sen, Quasi-Dimensional Simulation of Spark Ignition Engines. From Thermodynamic Optimization to Cyclic Variability (Springer, London, 2014)Google Scholar
  50. 50.
    G. Gonca, B. Sahin, Y. Ust, A. Parlak, Appl. Therm. Eng. 85, 9 (2015)CrossRefGoogle Scholar
  51. 51.
    Y. Ust, B. Sahin, A. Safa, Acta Phys. Pol. A 120, 412 (2011)CrossRefGoogle Scholar
  52. 52.
    Y. Ust, Int. J. Thermophys. 30, 1001 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    C. Wang, L.G. Chen, Y.L. Ge, F.R. Sun, Appl. Therm. Eng. 109, 507 (2016)CrossRefGoogle Scholar
  54. 54.
    S.J. Xia, L.G. Chen, F.R. Sun, Eur. Phys. J. Plus 131, 394 (2016)CrossRefGoogle Scholar
  55. 55.
    Y.L. Ge, L.G. Chen, F.R. Sun, Entropy 18, 139 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    D.A. Blank, C. Wu, Energy Convers. Manag. 14, 98 (1994)Google Scholar
  57. 57.
    J.X. Lin, L.G. Chen, C. Wu, F.R. Sun, Int. J. Energy Res. 23, 765 (1999)CrossRefGoogle Scholar
  58. 58.
    S.S. Hou, Energy Convers. Manag. 45, 3003 (2004)CrossRefGoogle Scholar
  59. 59.
    W.H. Wang, L.G. Chen, F.R. Sun, Int. J. Exergy 2, 340 (2002)CrossRefGoogle Scholar
  60. 60.
    T. Zhen, L.G. Chen, F.R. Sun, Trans. CSICE 20, 408 (2002)Google Scholar
  61. 61.
    B. Sahin, U. Kesgin, A. Kodal, Energy Convers. Manag. 43, 2019 (2002)CrossRefGoogle Scholar
  62. 62.
    L.G. Chen, F.R. Sun, C. Wu, Appl. Energy 79, 3 (2004)CrossRefGoogle Scholar
  63. 63.
    Y.J.R. Costa, A.G.B. Lima, C.R.B. Filho, Renew. Sustain. Energy Rev. 16, 4651 (2012)CrossRefGoogle Scholar
  64. 64.
    Y. Ust, B. Sahin, H.K. Kayadelen, G. Gonca, Int. J. Vehicle Des. 63, 102 (2013)CrossRefGoogle Scholar
  65. 65.
    Y. Ust, B. Sahin, A. Kodal, Appl. Energy 84, 1079 (2007)CrossRefGoogle Scholar
  66. 66.
    G. Gonca, E. Dobrucali, Renew. Energy 93, 658 (2016)CrossRefGoogle Scholar
  67. 67.
    G. Gonca, E. Dobrucali, J. Renew. Sustain. Energy 8, 025702 (2016)CrossRefGoogle Scholar
  68. 68.
    M.H. Gahruei, H.S. Jeshvaghani, S. Vahidi, L.G. Chen, Appl. Math. Model. 37, 7319 (2013)MathSciNetCrossRefGoogle Scholar
  69. 69.
    G. Gonca, B. Sahin, Sci. World J. 2014, 815787 (2014)CrossRefGoogle Scholar
  70. 70.
    G. Gonca, Energy Convers. Manag. 111, 205 (2016)CrossRefGoogle Scholar
  71. 71.
    G. Gonca, Appl. Math. Model. 40, 6725 (2016)MathSciNetCrossRefGoogle Scholar
  72. 72.
    H. Endo, K. Tanaka, Y. Kakuhama, Y. Goda, T. Fujiwaka, M. Nishigaki, Development of the lean burn Miller cycle gas engine, in 5th Int. Symp. Diagn. Model. Combust. Intern. Combust. Engines, July 1-4, 2001, 1-4, NagoyaGoogle Scholar
  73. 73.
    A. Al-Sarkhi, B.A. Akash, J.O. Jaber, M.S. Mohsen, E. Abu-Nada, Int. Commun. Heat Mass Transfer 29, 1159 (2002)CrossRefGoogle Scholar
  74. 74.
    C. Wu, P.V. Puzinauskas, J.S. Tsai, Appl. Therm. Eng. 23, 11 (2003)Google Scholar
  75. 75.
    G. Gonca, B. Sahin, A. Parlak, V. Ayhan, I. Cesur, S. Koksal, Energy 93, 795 (2015)CrossRefGoogle Scholar
  76. 76.
    G. Gonca, B. Sahin, Y. Ust, A. Parlak, Arab. J. Sci. Eng. 38, 383 (2013)CrossRefGoogle Scholar
  77. 77.
    J.M. Lin, Z.P. Xu, S.Q. Chang, H. Yan, Int. Comm. Heat Mass Transfer 54, 54 (2014)CrossRefGoogle Scholar
  78. 78.
    G. Gonca, B. Sahin, Appl. Math. Model. 40, 3764 (2016)CrossRefGoogle Scholar
  79. 79.
    A. Parlak, V. Ayhan, Y. Ust, B. Sahin, I. Cesur, B. Boru, G. Kokkulunk, J. Energy Inst. 85, 135 (2012)CrossRefGoogle Scholar
  80. 80.
    T. Li, Y. Gao, J.S. Wang, Z.Q. Chen, Energy Convers. Manag. 79, 59 (2014)CrossRefGoogle Scholar
  81. 81.
    G. Gonca, B. Sahin, A. Parlak, Y. Ust, V. Ayhan, I. Cesur, Energy 78, 266 (2014)CrossRefGoogle Scholar
  82. 82.
    G. Gonca, B. Sahin, A. Parlak, Y. Ust, V. Ayhan, I. Cesur, Appl. Energy 138, 11 (2015)CrossRefGoogle Scholar
  83. 83.
    G. Gonca, B. Sahin, Y. Ust, A. Parlak, J. Renew. Sustain. Energy 5, 1 (2013)CrossRefGoogle Scholar
  84. 84.
    G. Gonca, B. Sahin, Y. Ust, A. Parlak, A. Safa, J. Energy Inst. 88, 43 (2015)CrossRefGoogle Scholar
  85. 85.
    E. Dobrucali, H. Lund, M.J. Kaiser, Energy 103, 119 (2016)CrossRefGoogle Scholar
  86. 86.
    M. Cakir, Therm. Sci. 20, 363 (2016)CrossRefGoogle Scholar
  87. 87.
    G. Gonca, B. Sahin, Y. Ust, Energy 54, 285 (2013)CrossRefGoogle Scholar
  88. 88.
    Y. Ust, F. Arslan, I. Ozsari, M. Cakir, Energy 90, 552 (2015)CrossRefGoogle Scholar
  89. 89.
    G. Gonca, B. Sahin, Y. Ust, J. Thermophys. Heat Transfer 29, 678 (2015)CrossRefGoogle Scholar
  90. 90.
    J.A. Rocha-Martinez, T.D. Navarrete-Gonzalez, C.G. Pava-Miller, Int. J. Ambient Energy 27, 181 (2006)CrossRefGoogle Scholar
  91. 91.
    J.A. Rocha-Martinez, T.D. Navarrete-Gonzalez, C.G. Pava-Miller, Rev. Mex. Fis. 48, 228 (2002)Google Scholar
  92. 92.
    A. Ghatak, S. Chakraborty, J. Mech. Energy 58, 1 (2007)Google Scholar
  93. 93.
    Y.L. Ge, The effects of the variable specific heats of working fluid on the performance of internal combustion engines, Master Thesis (Naval University of Engineering, Wuhan, 2005) (in Chinese)Google Scholar
  94. 94.
    Y.L. Ge, L.G. Chen, F.R. Sun, C. Wu, Int. J. Ambient Energy 26, 203 (2005)CrossRefGoogle Scholar
  95. 95.
    A. Al-Sarkhi, J.O. Jaber, S.D. Probert, Appl. Energy 83, 343 (2006)CrossRefGoogle Scholar
  96. 96.
    L.G. Chen, Y.L. Ge, F.R. Sun, C. Wu, Termotehnica 14, 24 (2010)Google Scholar
  97. 97.
    R. Ebrahimi, Acta Phys. Pol. A 117, 887 (2010)CrossRefGoogle Scholar
  98. 98.
    R. Ebrahimi, J. Am. Sci. 5, 25 (2009)Google Scholar
  99. 99.
    R. Ebrahimi, J. Energy Inst. 83, 1 (2010)CrossRefGoogle Scholar
  100. 100.
    R. Ebrahimi, L.G. Chen, Int. J. Ambient Energy 31, 101 (2010)CrossRefGoogle Scholar
  101. 101.
    R. Ebrahimi, J. Am. Sci. 5, 175 (2009)Google Scholar
  102. 102.
    R. Ebrahimi, J. Am. Sci. 5, 83 (2009)Google Scholar
  103. 103.
    R. Ebrahimi, J. Am. Sci. 5, 58 (2009)Google Scholar
  104. 104.
    R. Ebrahimi, J. Energy Inst. 84, 30 (2011)CrossRefGoogle Scholar
  105. 105.
    R. Ebrahimi, Acta Phys. Pol. A 118, 534 (2010)CrossRefGoogle Scholar
  106. 106.
    Y.L. Ge, Finite time thermodynamic analysis and optimization for irreversible internal combustion engine cycles, PhD Thesis (Naval University of Engineering, Wuhan, 2011) (in Chinese)Google Scholar
  107. 107.
    F. Angulo-Brown, J. Fernandez-Betanzos, C.A. Diaz-Pico, Eur. J. Phys. 15, 38 (1994)CrossRefGoogle Scholar
  108. 108.
    Y. Ust, B. Sahin, O.S. Sogut, Appl. Energy 82, 23 (2005)CrossRefGoogle Scholar
  109. 109.
    Y. Ust, B. Sahin, A. Kodal, J. Energy Inst. 78, 145 (2005)CrossRefGoogle Scholar
  110. 110.
    André L.S. Moscato, Santiago D.R. Oliveira, Int. Rev. Mech. Eng. 9, 1970 (2015)Google Scholar
  111. 111.
    Hemant B. Mehta, Omprakash S. Bharti, Power, efficiency, entropy generation rate and ecological optimization of an irreversible Otto cycle with variable specific heats, in Proceedings of the 20th National and 9th International ISHMT-ASME Heat and Mass Transfer Conference, January 4-6, 2010, Mumbai, IndiaGoogle Scholar
  112. 112.
    M.M. Naserian, S. Farahat, F. Sarhaddi, Energy Convers. Manag. 103, 790 (2015)CrossRefGoogle Scholar
  113. 113.
    Y. Ust, B. Sahin, A. Kodal, Int. J. Therm. Sci. 45, 94 (2006)CrossRefGoogle Scholar
  114. 114.
    Y. Ust, B. Sahin, A. Kodal, I.H. Akcay, Appl. Energy 83, 558 (2006)CrossRefGoogle Scholar
  115. 115.
    Y. Ust, O.S. Sogut, B. Sahin, A. Durmayaz, J. Energy Inst. 79, 47 (2006)CrossRefGoogle Scholar
  116. 116.
    R. Long, W. Liu, Phys. A 434, 232 (2015)CrossRefGoogle Scholar
  117. 117.
    R. Long, W. Liu, Phys. A 434, 14 (2016)ADSCrossRefGoogle Scholar
  118. 118.
    G. Gonca, Energy 109, 152 (2016)CrossRefGoogle Scholar
  119. 119.
    G. Gonca, B. Sahin, Appl. Therm. Eng. 105, 566 (2016)CrossRefGoogle Scholar
  120. 120.
    A. Parlak, Energy Convers. Manag. 46, 351 (2005)CrossRefGoogle Scholar
  121. 121.
    S.A. Klein, Trans. ASME J. Eng. Gas Turbine Pow. 113, 511 (1991)CrossRefGoogle Scholar
  122. 122.
    M. Mozurkewich, R.S. Berry, Proc. Natl. Acad. Sci. U.S.A. 78, 1986 (1981)ADSCrossRefGoogle Scholar
  123. 123.
    M. Mozurkewich, R.S. Berry, J. Appl. Phys. 53, 34 (1982)ADSCrossRefGoogle Scholar
  124. 124.
    L.G. Chen, Y.L. Ge, F.R. Sun, C. Wu, Energy Convers. Manag. 47, 3224 (2006)CrossRefGoogle Scholar
  125. 125.
    Y.L. Ge, L.G. Chen, F.R. Sun, Arab. J. Sci. Eng. 38, 373 (2013)CrossRefGoogle Scholar
  126. 126.
    R. Ebrahimi, Appl. Math. Model. 36, 4073 (2012)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Zhixiang Wu
    • 1
    • 2
    • 3
  • Lingen Chen
    • 1
    • 2
    • 3
  • Yanlin Ge
    • 1
    • 2
    • 3
  • Fengrui Sun
    • 1
    • 2
    • 3
  1. 1.Institute of Thermal Science and Power EngineeringNaval University of EngineeringWuhanChina
  2. 2.Military Key Laboratory for Naval Ship Power EngineeringNaval University of EngineeringWuhanChina
  3. 3.College of Power EngineeringNaval University of EngineeringWuhanChina

Personalised recommendations