Skip to main content

Advertisement

Log in

Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the present study an experimental set-up is used to investigate the effect of a nanofluid as a working fluid to increase thermosyphon efficiency. Nanofluids are a new form of heat transfer media prepared by suspending metallic and nonmetallic nanoparticles in a base fluid. The nanoparticles added to the fluid enhance the thermal characteristics of the base fluid. The nanofluid used in this experiment was a mixture of water and nanoparticles prepared with 0.5%, 1%, 1.5%, or 2% (v) concentration of silicon carbide (SiC) nanoparticles and 1%, 2% and 3% (v) concentration of aluminum oxide (Al2O3) in an ultrasonic homogenizer. The results indicate that the SiC/water and Al2O3/water nanofluids increase the thermosyphon performance. The efficiency of the thermosyphon using the 2% (v) (SiC) nanoparticles nanofluid was 1.11 times that of pure water and the highest efficiency occurs for the 3% (Al2O3) nanoparticle concentration with input power of 300 W. The decrease in the temperature difference between the condenser and evaporator confirms these enhancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.R. Majideian, Appl. Therm. Eng. 20, 1271 (1999)

    Google Scholar 

  2. A. Akbarzadeh, T. Wadowski, Appl. Therm. Eng. 16, 81 (1997)

    Article  Google Scholar 

  3. G. Liu, The application of heat pipe heat exchanger in exhaust gas heat recovery system and its thermodynamic analysis, in Proceedings of the Eighth International Heat Pipe Conference, Beijing, China, 1992 (International Academic Publishers, 1993) pp. 582--585

  4. L. Vasiliev, D. Lossouarn, C. Romestant, A. Alexandre, Y. Bertin, Y. Piatsiushyk, V. Romanenkov, Int. J. Heat Mass Transfer 52, 301 (2008)

    Article  Google Scholar 

  5. A.I. Streltsov, Heat Transf. Sov. Res. 7, 23 (1975)

    Google Scholar 

  6. K. Harada, S. Inoue, J. Fujita, Heat transfer characteristics of large heat pipe, in Hitachi Zosen Tech. Rev. (1980) p. 41

  7. K. Vafai, W. Wang, Int. J. Heat Mass Transfer 35, 2087 (1992)

    Article  ADS  Google Scholar 

  8. F. Kaminaga, H. Hashimoto, M.D. Feroz, K. Goto, K. Matsumura, Heat transfer characteristics of evaporation and condensation in a two-phase closed thermosyphon, in Proceedings of the 10th International Heat Pipe Conference, Stuttgart, Germany, 1997, pp. 1--6

  9. M.A. Shalaby, F.F. Ariad, G.I. Sultan, M.M.M. Awad, Heat transfer performance of a two-phase closed thermosyphons, in Proceedings of 6th International Heat Pipes Symposium, Chaiang Mai, 2000, pp. 325--331

  10. S.H. Noie, Appl. Therm. Eng. 25, 495 (2005)

    Article  Google Scholar 

  11. S.U.S. Choi, ASME J. Heat Transf. 66, 99 (1995)

    Google Scholar 

  12. S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, J. Heat Transf. 121, 280 (1999)

    Article  Google Scholar 

  13. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  14. P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, Int. J. Heat Mass Transfer 45, 855 (2002)

    Article  Google Scholar 

  15. X. Wang, X. Xu, U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999)

    Article  Google Scholar 

  16. S. ZeinaliHeris, S.Gh. Etemad, M. Nasr Esfahany, Int. Commun. Heat Mass Transf. 33, 529 (2006)

    Article  Google Scholar 

  17. S. ZeinaliHeris, M. Nasr Esfahany, S.Gh. Etemad, J. Enhanc. Heat Transf. 13, 1 (2006)

    Article  Google Scholar 

  18. S. ZeinaliHeris, M. Nasr Esfahany, S.Gh. Etemad, Int. J. Heat Fluid Flow 28, 203 (2007)

    Article  Google Scholar 

  19. D. Kim, Y.H. Cho, C. Li, S. Cheong, Y. Hwang, J.K. Lee, D.S. Hong, S. Moon, Curr. Appl. Phys. 9, 119 (2008)

    Article  ADS  Google Scholar 

  20. S.J. Palm, G. Roy, C.T. Nguyen, Heat transfer enhancement in a radial flow cooling system using nanofluids, in International Symposium on Advances in Computational Heat Transfer, Norway, 2004

  21. J.P. Tu, N. Dinh, T. Theofanous, An experimental study of nanofluid boiling heat transfer, in Proceedings of the Sixth International Symposium on Heat Transfer, Beijing, China, 2004

  22. Zhen-Hua Liu, Xue-Fei Yang, Jian-GuoXiong, Int. J. Therm. Sci. 49, 1156 (2010)

    Article  Google Scholar 

  23. H. Peng, G. Ding, W. Jiang, H. Hu, Y. Gao, Int. J. Refrig. 32, 1259 (2009)

    Article  Google Scholar 

  24. V. Trisaksri, S. Wongwises, Int. J. Heat Mass Transfer 52, 1582 (2009)

    Article  Google Scholar 

  25. S.W. Kang, W.C. Wei, S.H. Tsai, S.Y. Yang, Appl. Therm. Eng. 26, 2377 (2006)

    Article  Google Scholar 

  26. S.W. Kang, W.C. Wei, S.H. Tsai, C.C. Huang, Appl. Therm. Eng. 29, 973 (2009)

    Article  Google Scholar 

  27. Y. Lin, S. Kang, H. Chen, Appl. Therm. Eng. 28, 1312 (2008)

    Article  Google Scholar 

  28. Z. Liu, J. Xiong, R. Bao, Int. J. Multiphase Flow 33, 1284 (2007)

    Article  Google Scholar 

  29. X.F. Yang, Z.H. Liu, J. Zhao, J. Micromech. Microeng. 18, 035038 (2008)

    Article  ADS  Google Scholar 

  30. H.B. Ma, C. Wilson, Q. Yu, K. Park, U.S. Choi, M. Tirumala, J. Heat Transf. 128, 1213 (2006)

    Article  Google Scholar 

  31. H.B. Ma, C. Wilson, B. Borgmeyer, K. Park, Q. Yu, S.U.S. Choi, M. Tirumala, Appl. Phys. Lett. 88, 143116 (2006)

    Article  ADS  Google Scholar 

  32. P. Naphon, P. Assadamongkol, T. Borirak, Int. Commun. Heat Mass Transf. 35, 316 (2008)

    Google Scholar 

  33. P. Naphon, D. Thongkum, P. Assadamongkol, J. Energy Convers. Manage. 50, 772 (2009)

    Article  Google Scholar 

  34. R.R. Riehl, Analysis of loop heat pipe behavior using nanofluid, in Heat Powered Cycles International Conference (HPC), New Castle, UK, 2006, pp. 06102

  35. C.Y. Tsaia, H.T. Chiena, P.P. Dingb, B. Chanc, T.Y. Luhd, P.H. Chena, Mater. Lett. 58, 1461 (2004)

    Article  Google Scholar 

  36. S. Khandekar, Y.M. Joshi, B. Mehta, Int. J. Therm. Sci. 47, 659 (2008)

    Article  Google Scholar 

  37. S.H. Noie, S. ZeinaliHeris, M. Kahani, S.M. Nowee, Int. J. Heat Fluid Flow 30, 700 (2009)

    Article  Google Scholar 

  38. G. Huminic, A. Huminic, Exp. Therm. Fluid Sci. 35, 550 (2011)

    Article  Google Scholar 

  39. G. Huminic, A. Huminic, I. Morjan, F. Dumitrache, Int. J. Heat Mass Transfer 54, 656 (2011)

    Article  Google Scholar 

  40. S.W. Churchill, H.H.S. Chu, Int. J. Heat Mass Transfer 18, 1049 (1975)

    Article  ADS  Google Scholar 

  41. J.G. Collier, J.R. Thome, Convective Boiling and Condensation, third ed. (Clarendon Press, Oxford, UK, 1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. R. Sahebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinzadeh, S., Sahebi, S.A.R., Ghasemiasl, R. et al. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water). Eur. Phys. J. Plus 132, 197 (2017). https://doi.org/10.1140/epjp/i2017-11455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11455-3

Navigation