Surface instability and wrinkling pattern evolution on a fluid-supported inhomogeneous film

  • You-Jun Ning
  • Zheng-Cai Zhang
  • Bin Gu
  • Alamusi
  • Fei Jia
Regular Article
  • 78 Downloads

Abstract.

Fluid-supported film structures widely exist in nature and can have profound potential technological applications. The surface instability and morphological transition of a fluid-supported film with a defect part induced by an in-plane compression are explored. The effects of the geometry and material properties of the defect part on the initial buckling load are studied through a theoretical model. Finite-element simulations are carried out to analyze the whole dynamic buckling process, with an emphasis on the initial buckling load and the wrinkling pattern evolution. Results indicate that the length and the modulus ratios of the defect part to other parts of the film have significant influences on the initial buckling load, and the modulus ratio is also found to play an important role in the pattern evolution. The study could find applications in controlling the surface morphology of fluid-supported films and provide help in better understanding some biological tissue morphology phenomenon.

References

  1. 1.
    M. Basan, J.F. Joanny, J. Prost, M. Risler, Phys. Rev. Lett. 106, 158101 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    P. Ciarletta, M. Ben Amar, Int. J. Non-Linear Mech. 47, 248 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    A. Goriely, M. Geers, G.A. Holzapfel, J. Jayamohan, A. Jérusalem, S. Sivaloganathan, W. Squier, J.A.W. van Dommelen, S. Waters, E. Kuhl, Biomech. Model. Mechanobiol. 14, 931 (2015)CrossRefGoogle Scholar
  4. 4.
    P.V. Bayly, L.A. Taber, C.D. Kroenke, J. Mech. Behav. Biomed. Mater. 29, 568 (2014)CrossRefGoogle Scholar
  5. 5.
    X. Chen, J. Yin, Soft Matter 6, 5667 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    S. Cai, D. Breid, A.J. Crosby, Z. Suo, J.W. Hutchinson, J. Mech. Phys. Solids 59, 1094 (2011)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Jin, A. Takei, J.W. Hutchinson, J. Mech. Phys. Solids 81, 22 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Z.B. Wang, M.G. Helander, J. Qiu, D.P. Puzzo, M.T. Greiner, Z.M. Hudson, S. Wang, Z.W. Liu, Z.H. Lu, Nat. Photon. 5, 753 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nat. Mater. 4, 293 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, J.A. Rogers, Science 320, 507 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    C.D. Coman, A.P. Bassom, J. Mech. Phys. Solids 55, 1601 (2007)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Y. Klein, E. Efrati, E. Sharon, Science 315, 1116 (2007)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    E. Sultan, A. Boudaoud, J. Appl. Mech. 75, 051002 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    B. Audoly, A. Boudaoud, J. Mech. Phys. Solids 56, 2401 (2008)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Dervaux, M. Ben Amar, IMA J. Appl. Math. 75, 571 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    F. Brau, P. Damman, H. Diamant, T.A. Witten, Soft Matter 9, 8177 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Zasadzinski, J. Ding, H.E. Warriner, F. Bringezu, A.J. Waring, Curr. Opin. Colloid Interface Sci. 6, 506 (2001)CrossRefGoogle Scholar
  18. 18.
    K.E. Mueggenburg, X.M. Lin, R.H. Goldsmith, H.M. Jaeger, Nat. Mater. 6, 656 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    L. Pocivavsek, R. Dellsy, A. Kern, S. Johnson, B. Lin, K.Y.C. Lee, E. Cerda, Science 320, 5878 (2008)CrossRefGoogle Scholar
  20. 20.
    M. Rivetti, S. Neukirch, J. Mech. Phys. Solids 69, 143 (2014)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    O. Oshri, F. Brau, H. Diamant, Phys. Rev. E 91, 052408 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    B. Audoly, Phys. Rev. E 84, 011605 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    M. Pineirua, N. Tanaka, B. Roman, J. Bico, Soft Matter 9, 10985 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    J. Huang, B. Davidovitch, C.D. Santangelo, T.P. Russell, N. Menon, Phys. Rev. Lett. 105, 038302 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M. Hetenyi, Beams on Elastic Foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering (The University of Michigan Press, Ann Arbor, 1946)Google Scholar
  26. 26.
    B. Li, Y.-P. Cao, X.-Q. Feng, J. Biomech. 44, 182 (2011)CrossRefGoogle Scholar
  27. 27.
    B. Li, F. Jia, Y.-P. Cao, X.-Q. Feng, H. Gao, Phys. Rev. Lett. 106, 234301 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    F. Jia, B. Li, Y.-P. Cao, W.-H. Xie, X.-Q. Feng, Phys. Rev. E 91, 012403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    D.M. Haughton, A. Orr, Int. J. Solids Struct. 34, 1893 (1997)CrossRefGoogle Scholar
  30. 30.
    ABAQUS analysis user's manual, Version 6.10 (2010)Google Scholar
  31. 31.
    S.P. Timoshenko, Strength of Materials, Part III, Advanced Theory and Problems (D. Van Nostrand Co., Princeton, New Jersey, 1956)Google Scholar
  32. 32.
    W.T. Koiter, Elastic Stability of Solids and Structures (Cambridge University Press, Cambridge, 2009)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • You-Jun Ning
    • 1
  • Zheng-Cai Zhang
    • 1
  • Bin Gu
    • 1
  • Alamusi
    • 1
  • Fei Jia
    • 1
  1. 1.School of Manufacturing Science and EngineeringSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations