Viscous dissipation in 2D fluid dynamics as a symplectic process and its metriplectic representation

Regular Article

Abstract.

Dissipation can be represented in Hamiltonian mechanics in an extended phase space as a symplectic process. The method uses an auxiliary variable which represents the excitation of unresolved dynamics and a Hamiltonian for the interaction between the resolved dynamics and the auxiliary variable. This method is applied to viscous dissipation (including hyper-viscosity) in a two-dimensional fluid, for which the dynamics is non-canonical. We derive a metriplectic representation and suggest a measure for the entropy of the system.

References

  1. 1.
    V. Arnol'd, A. Givental', in Dynamical Systems IV, edited by V. Arnol'd, S. Novikov (Springer, 2001) pp. 1--138Google Scholar
  2. 2.
    R. Littlejohn, in Mathematical methods in hydrodynamics and integrability in related dynamical systems, edited by M. Tabor, Y. Treve, AIP Conf. Proc., 88 (AIP, New York, 1982) p. 47Google Scholar
  3. 3.
    P.J. Morrison, J. Phys. Conf. Ser. 169, 012006 (2009)CrossRefGoogle Scholar
  4. 4.
    G.K. Vallis, G.F. Carnevale, W.R. Young, J. Fluid Mech. 207, 133 (1989)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    T.G. Shepherd, J. Fluid Mech. 213, 573 (1990)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    F. Gay-Balmaz, D.D. Holmes, Nonlinearity 26, 495 (2013)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    N. Padhye, P.J. Morrison, Plasma Phys. Rep. 22, 869 (1996)ADSGoogle Scholar
  8. 8.
    P.J. Morrison, Rev. Mod. Phys. 70, 467 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    A.N. Kaufman, Phys. Lett. A 100, 419 (1984)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    P.J. Morrison, Phys. Lett. A 100, 423 (1984)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    P.J. Morrison, Physica D 18, 410 (1986)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Grmela, Physica D 21, 179 (1986)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    L.A. Turski, A.N. Kaufman, Phys. Lett. A 120, 331 (1987)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    A.N. Beris, B.J. Edwards, J. Rheol. 34, 55 (1990)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    D.D. Holm, V. Putkaradze, C. Tronci, J. Phys. A: Math. Theor. 41, 344010 (2008)CrossRefGoogle Scholar
  16. 16.
    A. Bihlo, J. Phys. A: Math. Theor. 41, 292001 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Martin, E. Siggia, H. Rose, Phys. Rev. A 8, 423 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    R. Phythian, J. Phys. A: Math. Gen. 8, 1423 (1975)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    R. Phythian, J. Phys. A: Math. Gen. 9, 269 (1976)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. Phythian, J. Phys. A: Math. Gen. 10, 777 (1977)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    O. Cépas, J. Kurchan, Eur. Phys. J. B 2, 221 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    R. Graham, T. Tél, Phys. Rev. Lett. 52, 9 (1984)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    R. Graham, T. Tél, J. Stat. Phys. 35, 729 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    R. Graham, T. Tél, Phys. Rev. A 31, 1109 (1985)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    G. Carnevale, J. Frederiksen, J. Fluid Mech. 131, 289 (1983)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    I. Drummond, J. Fluid Mech. 123, 59 (1982)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    G. Carnevale, P. Martin, Geophys. Astrophys. Fluid Dyn. 20, 131 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    A. Navarra, J. Tribbia, G. Conti, PloS ONE 8, e67022 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    T. Lundgren, Lect. Notes Phys. 12, 70 (1972)ADSCrossRefGoogle Scholar
  30. 30.
    P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Vol. 1 (McGraw-Hill, New York, 1953)Google Scholar
  31. 31.
    R.W. Atherton, G.M. Homsy, Stud. Appl. Math. 54, 31 (1975)CrossRefGoogle Scholar
  32. 32.
    T.F. Nonnenmacher, in Recent Developments in Nonequilibrium Thermodynamics: Fluids and Related Topics (Springer, 1986) pp. 149--174Google Scholar
  33. 33.
    T. Shah, R. Chattopadhyay, K. Vaidya, S. Chakraborty, Phys. Rev. E 92, 062927 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    E. Celeghini, M. Rasetti, G. Vitiello, Ann. Phys. 215, 156 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, E. Tosatti, Rev. Mod. Phys. 85, 529 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    M.V. Berry, J.P. Keating, in Supersymmetry and Trace Formulae: Chaos and Disorder, edited by J.P. Keating, D.E. Khmelnitski, I.V. Lerner (Kluwer Academic/Plenum Publishers, New York, 1999)Google Scholar
  37. 37.
    M.V. Berry, J.P. Keating, SIAM Rev. 41, 236 (1999)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    G. Sierra, J. Rodríguez-Laguna, Phys. Rev. Lett. 106, 200201 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    F. Riewe, Phys. Rev. E 53, 1890 (1996)ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    S. Sieniutycz, Conservation laws in variational thermo-hydrodynamics, Vol. 279 (Springer Science & Business Media, 2012)Google Scholar
  41. 41.
    P. Névir, M. Sommer, J. Atmos. Sci. 66, 2073 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    R. Salazar, M.V. Kurgansky, J. Phys. A: Math. Theor. 43, 305501 (2010)CrossRefGoogle Scholar
  43. 43.
    R. Blender, G. Badin, J. Phys. A: Math. Theor. 48, 105501 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, 2004)Google Scholar
  45. 45.
    M. Sommer, P. Névir, Q. J. R. Met. Soc. 135, 485 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Meteorological InstituteUniversity of HamburgHamburgGermany
  2. 2.Institute of OceanographyUniversity of HamburgHamburgGermany

Personalised recommendations