Viscous dissipation in 2D fluid dynamics as a symplectic process and its metriplectic representation
Regular Article
First Online:
- 53 Downloads
- 3 Citations
Abstract.
Dissipation can be represented in Hamiltonian mechanics in an extended phase space as a symplectic process. The method uses an auxiliary variable which represents the excitation of unresolved dynamics and a Hamiltonian for the interaction between the resolved dynamics and the auxiliary variable. This method is applied to viscous dissipation (including hyper-viscosity) in a two-dimensional fluid, for which the dynamics is non-canonical. We derive a metriplectic representation and suggest a measure for the entropy of the system.
References
- 1.V. Arnol'd, A. Givental', in Dynamical Systems IV, edited by V. Arnol'd, S. Novikov (Springer, 2001) pp. 1--138Google Scholar
- 2.R. Littlejohn, in Mathematical methods in hydrodynamics and integrability in related dynamical systems, edited by M. Tabor, Y. Treve, AIP Conf. Proc., 88 (AIP, New York, 1982) p. 47Google Scholar
- 3.P.J. Morrison, J. Phys. Conf. Ser. 169, 012006 (2009)CrossRefGoogle Scholar
- 4.G.K. Vallis, G.F. Carnevale, W.R. Young, J. Fluid Mech. 207, 133 (1989)ADSCrossRefMathSciNetGoogle Scholar
- 5.T.G. Shepherd, J. Fluid Mech. 213, 573 (1990)ADSCrossRefMathSciNetGoogle Scholar
- 6.F. Gay-Balmaz, D.D. Holmes, Nonlinearity 26, 495 (2013)ADSCrossRefMathSciNetGoogle Scholar
- 7.N. Padhye, P.J. Morrison, Plasma Phys. Rep. 22, 869 (1996)ADSGoogle Scholar
- 8.P.J. Morrison, Rev. Mod. Phys. 70, 467 (1998)ADSCrossRefGoogle Scholar
- 9.A.N. Kaufman, Phys. Lett. A 100, 419 (1984)ADSCrossRefMathSciNetGoogle Scholar
- 10.P.J. Morrison, Phys. Lett. A 100, 423 (1984)ADSCrossRefMathSciNetGoogle Scholar
- 11.P.J. Morrison, Physica D 18, 410 (1986)ADSCrossRefMathSciNetGoogle Scholar
- 12.M. Grmela, Physica D 21, 179 (1986)ADSCrossRefMathSciNetGoogle Scholar
- 13.L.A. Turski, A.N. Kaufman, Phys. Lett. A 120, 331 (1987)ADSCrossRefMathSciNetGoogle Scholar
- 14.A.N. Beris, B.J. Edwards, J. Rheol. 34, 55 (1990)ADSCrossRefMathSciNetGoogle Scholar
- 15.D.D. Holm, V. Putkaradze, C. Tronci, J. Phys. A: Math. Theor. 41, 344010 (2008)CrossRefGoogle Scholar
- 16.A. Bihlo, J. Phys. A: Math. Theor. 41, 292001 (2008)CrossRefMathSciNetGoogle Scholar
- 17.P. Martin, E. Siggia, H. Rose, Phys. Rev. A 8, 423 (1973)ADSCrossRefGoogle Scholar
- 18.R. Phythian, J. Phys. A: Math. Gen. 8, 1423 (1975)ADSCrossRefMathSciNetGoogle Scholar
- 19.R. Phythian, J. Phys. A: Math. Gen. 9, 269 (1976)ADSCrossRefMathSciNetGoogle Scholar
- 20.R. Phythian, J. Phys. A: Math. Gen. 10, 777 (1977)ADSCrossRefMathSciNetGoogle Scholar
- 21.O. Cépas, J. Kurchan, Eur. Phys. J. B 2, 221 (1998)ADSCrossRefGoogle Scholar
- 22.R. Graham, T. Tél, Phys. Rev. Lett. 52, 9 (1984)ADSCrossRefMathSciNetGoogle Scholar
- 23.R. Graham, T. Tél, J. Stat. Phys. 35, 729 (1984)ADSCrossRefGoogle Scholar
- 24.R. Graham, T. Tél, Phys. Rev. A 31, 1109 (1985)ADSCrossRefMathSciNetGoogle Scholar
- 25.G. Carnevale, J. Frederiksen, J. Fluid Mech. 131, 289 (1983)ADSCrossRefMathSciNetGoogle Scholar
- 26.I. Drummond, J. Fluid Mech. 123, 59 (1982)ADSCrossRefMathSciNetGoogle Scholar
- 27.G. Carnevale, P. Martin, Geophys. Astrophys. Fluid Dyn. 20, 131 (1982)ADSCrossRefGoogle Scholar
- 28.A. Navarra, J. Tribbia, G. Conti, PloS ONE 8, e67022 (2013)ADSCrossRefGoogle Scholar
- 29.T. Lundgren, Lect. Notes Phys. 12, 70 (1972)ADSCrossRefGoogle Scholar
- 30.P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Vol. 1 (McGraw-Hill, New York, 1953)Google Scholar
- 31.R.W. Atherton, G.M. Homsy, Stud. Appl. Math. 54, 31 (1975)CrossRefGoogle Scholar
- 32.T.F. Nonnenmacher, in Recent Developments in Nonequilibrium Thermodynamics: Fluids and Related Topics (Springer, 1986) pp. 149--174Google Scholar
- 33.T. Shah, R. Chattopadhyay, K. Vaidya, S. Chakraborty, Phys. Rev. E 92, 062927 (2015)ADSCrossRefGoogle Scholar
- 34.E. Celeghini, M. Rasetti, G. Vitiello, Ann. Phys. 215, 156 (1992)ADSCrossRefGoogle Scholar
- 35.A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, E. Tosatti, Rev. Mod. Phys. 85, 529 (2013)ADSCrossRefGoogle Scholar
- 36.M.V. Berry, J.P. Keating, in Supersymmetry and Trace Formulae: Chaos and Disorder, edited by J.P. Keating, D.E. Khmelnitski, I.V. Lerner (Kluwer Academic/Plenum Publishers, New York, 1999)Google Scholar
- 37.M.V. Berry, J.P. Keating, SIAM Rev. 41, 236 (1999)ADSCrossRefMathSciNetGoogle Scholar
- 38.G. Sierra, J. Rodríguez-Laguna, Phys. Rev. Lett. 106, 200201 (2011)ADSCrossRefGoogle Scholar
- 39.F. Riewe, Phys. Rev. E 53, 1890 (1996)ADSCrossRefMathSciNetGoogle Scholar
- 40.S. Sieniutycz, Conservation laws in variational thermo-hydrodynamics, Vol. 279 (Springer Science & Business Media, 2012)Google Scholar
- 41.P. Névir, M. Sommer, J. Atmos. Sci. 66, 2073 (2009)ADSCrossRefGoogle Scholar
- 42.R. Salazar, M.V. Kurgansky, J. Phys. A: Math. Theor. 43, 305501 (2010)CrossRefGoogle Scholar
- 43.R. Blender, G. Badin, J. Phys. A: Math. Theor. 48, 105501 (2015)ADSCrossRefGoogle Scholar
- 44.B. Leimkuhler, S. Reich, Simulating Hamiltonian Dynamics (Cambridge University Press, 2004)Google Scholar
- 45.M. Sommer, P. Névir, Q. J. R. Met. Soc. 135, 485 (2009)ADSCrossRefGoogle Scholar
Copyright information
© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017