Skip to main content

Analytic study of solutions for the Born-Infeld equation in nonlinear electrodynamics


The Born-Infeld equation is an important nonlinear partial differential equation in theoretical and mathematical physics. The Lie group method is used for simplifying the nonlinear partial differential equation, which is partly solved, in which there are some difficulties; to overcome the difficulties, we develop a power series method, and find the solutions in analytic form. In the mean time, a wave propagation (traveling wave) method is developed for solving the equation, and analytic solutions are also constructed.

This is a preview of subscription content, access via your institution.


  1. M. Born, L. Infeld, Proc. R. Soc. A 144, 425 (1934)

    ADS  Article  Google Scholar 

  2. E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 163, 123 (1985)

    ADS  Article  MathSciNet  Google Scholar 

  3. C.P. Bachas, Physics 248, 85 (1998)

    Google Scholar 

  4. M.K. Gaillard, B. Zumino, Nonlinear electromagnetic self-duality and Legendre transformations, Office of Scientific and Technical Information Technical Reports (1997) pp. 33--48

  5. N.A. Chernikov, N.S. Shavokhina, Izv. Vyssh. Uchebn. Zaved. Mat. 30, 62 (1986)

    Google Scholar 

  6. A.A. Chernitskii, Born-Infeld equations, in Encyclopedia of Nonlinear Science, edited by A. Scott (Routledge, New York-London, 2004) pp. 67--69, hep-th/0509087

  7. Y. Xie, J. Tang, Int. J. Theor. Phys. 45, 6 (2006)

    ADS  Article  Google Scholar 

  8. J.R. Bogning, Int. J. Mod. Nonlinear Theory Appl. 02, 135 (2013)

    Article  Google Scholar 

  9. G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations (Springer, New York, 1974)

  10. H. Liu, J. Li, L. Liu, Appl. Math. Comput. 215, 2927 (2009)

    MathSciNet  Google Scholar 

  11. G.W. Wang, T.Z. Xu, Nonlinear Dyn. 76, 571 (2014)

    Article  Google Scholar 

  12. F.M. Fernández, E.A. Castro, Phys. Lett. A 124, 1 (1987)

    ADS  Article  MathSciNet  Google Scholar 

  13. Q. Zhou, Nonlinear Dyn. 83, 1403 (2015)

    Article  Google Scholar 

  14. E. Schrödinger, Proc. R. Irish Acad. 49, 59 (1943)

    Google Scholar 

  15. J.C. Brunelli, A. Das, Phys. Lett. B 426, 57 (1997)

    ADS  Article  Google Scholar 

  16. O.F. Menshikh, Math. Notes 77, 510 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gangwei Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Xu, T., Fan, T. et al. Analytic study of solutions for the Born-Infeld equation in nonlinear electrodynamics. Eur. Phys. J. Plus 132, 139 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: