Scenario of a two-fluid FRW cosmological model with dark energy

Regular Article
  • 34 Downloads

Abstract.

In this paper we carry out an investigation of the equation of state parameter for dark energy in the spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model with barotropic fluid and dark energy. To get a deterministic model, we have assumed that the deceleration parameter (q) is a linear function of the Hubble parameter (H), i.e., \(q=\alpha + \beta H\), which yields the scale factor \(a= e^{\frac{1}{\beta}\sqrt{2\beta t+k_{1}}}\), where \(k_{1}\) is constant. The equation of state parameter for dark energy is a decreasing function of cosmic time in both interacting and non-interacting cases, and is always varying in the quintessence region for all cases. We have also discussed the jerk parameter for our models, and its value approaches that of the \(\Lambda\) CDM model at late times.

References

  1. 1.
    P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 72, 559 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Supernova Search Team Collaboration (A.G. Riess et al.), Astron. J. 116, 1009 (1998)CrossRefGoogle Scholar
  3. 3.
    Supernova Search Team Collaboration (A.G. Riess et al.), Astrophys. J. 607, 665 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    T. Padmanabhan, Phys. Rep. 380, 235 (2003)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 9, 273 (2000)Google Scholar
  7. 7.
    M. Tegmark et al., Astrophys. J. 606, 702 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Carroll, Living Rev. Relativ. 4, 1 (2001)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    S.M. Carroll et al., Phys. Rev. D 68, 023509 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    I.L. Shapiro, J. Sola, Phys. Lett. B 475, 236 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    A. Babic et al., Phys. Rev. D 65, 085002 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    I.L. Shapiro, J. Sola, J.H. Stefancic, J. Cosm. Astropart. Phys. 01, 012 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    J. Sola, H. Stefancic, Phys. Lett. B 624, 147 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    A.K. Yadav et al., Int. J. Theor. Phys. 50, 871 (2011) arXiv:1006.5412v2 [gr-qc]ADSCrossRefGoogle Scholar
  16. 16.
    M. Ozer, M.O. Taha, Phys. Lett. B 171, 363 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    O. Bertolami, Nuovo Cimento B 93, 36 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    J.V. Cunha, J.A.S. Lima, J.S. Alcaniz, Phys. Rev. D 66, 023520 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    J.S. Alcaniz, J.A.S. Lima, Phys. Rev. D 72, 063516 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    R.R. Caldwell, Phys. Lett. B 545, 23 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    V. Faraoni, Int. J. Mod. Phys. D 11, 471 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    J.S. Alcaniz, Phys. Rev. D 69, 083521 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    B.S. Berman, Gen. Relativ. Gravit. 20, 3746 (1988)Google Scholar
  24. 24.
    A. Pradhan et al., Astrophys. Space Sci. 343, 489 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    A. Pradhan et al., Indian J. Phys. 88, 757 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    R.K. Mishra et al., Rom. J. Phys. 58, 75 (2013a)Google Scholar
  27. 27.
    R.K. Mishra et al., Int. J. Theor. Phys. 52, 2546 (2013b)CrossRefGoogle Scholar
  28. 28.
    R.K. Mishra et al., Int. J. Theor. Phys. 55, 1241 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Chand, R.K. Mishra, A. Pradhan, Astrophys. Space Sci. 361, 81 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    O. Akarsu et al., Eur. J. Phys. Plus 129, 22 (2014)CrossRefGoogle Scholar
  31. 31.
    O. Akarsu, T. Dereli, Int. J. Theor. Phys. 51, 612 (2012)CrossRefGoogle Scholar
  32. 32.
    H. Amirhashchi, D.S. Chauhan, A. Pradhan, Electron. J. Theor. Phys. 30, 109 (2014)Google Scholar
  33. 33.
    R.K. Tiwari, Rameshwar Singh, B.K. Shukla, Afr. Rev. Phys. 10, 395 (2015)Google Scholar
  34. 34.
    R.K. Tiwari, B.K. Shukla, Prespacetime J. 7, 400 (2016)Google Scholar
  35. 35.
    R.K. Tiwari, A.K. Agrawal, B.K. Shukla, Prespacetime J. 7, 500 (2016)Google Scholar
  36. 36.
    D. Pavon, B. Wang, Gen. Relativ. Gravit. 41, 1 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    L. Amendola, G. Camargo Campos, R. Rosenfeld, Phys. Rev. D 75, 083506 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Z.K. Gou, N. Ohta, S. Tsujikawa, Phys. Rev. D 76, 023508 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    V. Sahni, arXiv:astro-ph/0211084 (2002)
  40. 40.
    M. Visser, Class. Quantum Grav. 21, 2603 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mathematics Govt. Model Science College RewaRewaIndia
  2. 2.Department of Mathematical SciencesUniversity of ZululandKwa-DlangezwaSouth Africa

Personalised recommendations