A new optimization method for a class of time fractional convection-diffusion-wave equations with variable coefficients

Regular Article
  • 82 Downloads

Abstract.

In this paper, we consider a class of time fractional convection-diffusion-wave equations (TFCDWE) with variable coefficients involving fractional derivatives in the Caputo sense. We also propose an optimization method based on the generalized polynomials (GPs) for solving TFCDWE. Our objective in the proposed method is to expand the solution of the problem under consideration in terms of GPs with unknown free coefficients and control parameters. Furthermore, we derive some operational matrices of the ordinary and fractional derivatives for these basis functions. Finally, we obtain the free coefficients and control parameters optimally by minimizing the error of the approximate solution. Some numerical examples are provided to demonstrate the validity and accuracy of the proposed method. The obtained results show that the proposed method is very efficient and accurate.

References

  1. 1.
    S. Das, Functional Fractional Calculus for System Identification and Controls (Springer-Verlag, Berlin, Heidelberg, 2008)Google Scholar
  2. 2.
    S. Das, Functional Fractional Calculus (Springer-Verlag, Berlin, Heidelberg, 2011)Google Scholar
  3. 3.
    V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles. Fields and Media (Springer-Verlag, Berlin, Heidelberg, 2010)Google Scholar
  4. 4.
    O.P. Agrawal, Nonlinear Dyn. 38, 323 (2004)CrossRefGoogle Scholar
  5. 5.
    N. Engheta, IEEE Trans. Antennas Propag. 44, 554 (1996)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    R.L. Magin, Comput. Math. Appl. 59, 1586 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    V.V. Kulish, J.L. Lage, J. Fluids Eng. 124, 803 (2002)CrossRefGoogle Scholar
  8. 8.
    K.B. Oldham, Adv. Eng. Softw. 41, 9 (2010)CrossRefGoogle Scholar
  9. 9.
    V. Gafiychuk, B. Datsko, V. Meleshko, J. Comput. Appl. Math. 220, 215 (2008)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics (Springer-Verlag, Wien, 1997) pp. 291--348Google Scholar
  11. 11.
    J.T. Machado, V. Kiryakov, F. Mainardi, Commun. Nonlinear Sci. Numer. Simulat. 16, 1140 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M.Sh. Dahaghin, H. Hassani, Nonlinear. Dyn. (2017) DOI:10.1007/s11071-017-3330-7
  13. 13.
    M. Behroozifar, A. Sazmand, Appl. Math. Comput. 296, 1 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Y. Chen, L. Liu, B. Li, Y. Sun, Appl. Math. Comput. 238, 329 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    P. Mokhtary, F. Ghoreishi, H.M. Srivastava, Appl. Math. Model. 40, 671 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Esmaeili, M. Shamsi, Y. Luchko, Comput. Math. Appl. 62, 918 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    J.A. Rad, S. Kazem, M. Shaban, K. Parand, A. Yildirim, Math. Methods Appl. Sci. 37, 329 (2014)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    M.H.T. Alshbool, A.S. Bataineh, I. Hashim, O.R. Isik, J. King Saud Univ. 29, 1 (2017)CrossRefGoogle Scholar
  19. 19.
    Y.J. Wang, Y. Liu, H. Li, J.F. Wang, Eur. Phys. J. Plus 131, 61 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Odibat, S. Momani, H. Xu, Appl. Math. Model. 34, 593 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    X. Li, M. Xu, X. Jiang, Appl. Math. Comput. 208, 434 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    M.H. Heydari, M.R. Hooshmandasl, F. Mohammadi, Appl. Math. Comput. 234, 267 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, C. Cattani, Phys. Lett. A 379, 71 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. El-sayed, M. Gaber, Phys. Lett. A 359, 175 (2006)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    L. Galeone, R. Garrappa, Mediterr. J. Math. 3, 565 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    K. Diethelm, N.J. Ford, A.D. Freed, Nonlinear Dyn. 16, 3 (2002)CrossRefGoogle Scholar
  27. 27.
    A.H. Bhrawy, E.H. Doha, D. Baleanu, S.S. Ezz-Eldien, J. Comput. Phys. 293, 142 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    S. Esmaeili, M. Shamsi, Commun. Nonlinear Sci. Numer. Simulat. 16, 3646 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    S. Kazem, S. Abbasbandy, S. Kumar, Appl. Math. Model. 37, 5498 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    X.-J. Yang, J.A.T. Machado, A new fractional operator of variable order: application in the description of anomalous diffusion, arXiv:1611.09200 (2016)
  31. 31.
    R.R. Nigmatullin, Phys. Status B 123, 739 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    Y.M. Wang, Numer. Algor. 70, 625 (2015)CrossRefGoogle Scholar
  33. 33.
    F. Zhou, X. Xu, Appl. Math. Comput. 280, 11 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Cui, J. Comput. Appl. Math. 255, 404 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Mohebbi, M. Abbaszadeh, Numer. Algor. 63, 431 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Saadatmandi, M. Dehghan, M.R. Azizi, Commun. Nonlinear Sci. Numer. Simulat. 17, 4125 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Q. Liu, F. Liu, I. Turner, V. Anh, Y.T. Gu, Appl. Math. Comput. 226, 336 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    M. Uddin, S. Hag, Commun. Nonlinear Sci. Numer. Simulat. 16, 4208 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    M. Aslefallah, E. Shivanian, Eur. Phys. J. Plus 130, 47 (2015)CrossRefGoogle Scholar
  40. 40.
    M.R. Hooshmandasl, M.H. Heydari, C. Cattani, Eur. Phys. J. Plus 131, 268 (2016)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsShahrekord UniversityShahrekordIran

Personalised recommendations