Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates

Regular Article

Abstract.

The nonlinear flexural vibration behavior of double-layered viscoelastic nanoplates including surface effects is investigated based on nonlocal elasticity theory. Using nonlinear strain-displacement relations, the geometrical nonlinearity is modeled. To derive the governing equations, nonlocal plate theory and Hamilton's principle are employed and also to obtain the nonlinear eigenvalues, the differential quadrature method (DQM) is utilized. In particular, surface effects, including surface elasticity, residual surface stress and surface density, are considered. The detailed parametric study is conducted, focusing on the influences of nonlocal effect, aspect ratio of the plate, elastic foundation, Van der Walls (vdW) interaction, temperature and the viscidity of the plate. The influence of the viscoelastic coefficient is also discussed. Results are compared and validated with available studies, and a good agreement is seen. After validation of the present study, various plots for the nonlinear-to-linear frequencies against amplitude-to-thickness ratio and thickness for double visco-nanoplates are presented.

References

  1. 1.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 78, 1932 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    A. Maiti, A. Svizhenko, M.P. Anantram, Phys. Rev. Lett. 88, 126805 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 131, 346 (2016)CrossRefGoogle Scholar
  4. 4.
    F. Ebrahimi, M.R. Barati, Smart Mater. Struct. 25, 105014 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    F. Ebrahimi, M.R. Barati, Int. J. Smart Nano Mater. 7, 119 (2016)CrossRefGoogle Scholar
  6. 6.
    F. Ebrahimi, E. Salari, Smart Mater. Struct. 24, 125007 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    F. Ebrahimi, M.R. Barati, Adv. Nano Res. 4, 65 (2016)CrossRefGoogle Scholar
  8. 8.
    F. Ebrahimi, M.R. Barati, J. Mech. 33, 23 (2016)CrossRefGoogle Scholar
  9. 9.
    F. Ebrahimi, M.R. Barati, J. Braz. Soc. Mech. Sci. Eng. 39, 937 (2017)CrossRefGoogle Scholar
  10. 10.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 131, 238 (2016)CrossRefGoogle Scholar
  11. 11.
    F. Ebrahimi, M.R. Barati, Int. J. Smart Nano Mater. 7, 69 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 131, 279 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Ebrahimi, M.R. Barati, A. Dabbagh, Int. J. Eng. Sci. 107, 169 (2016)CrossRefGoogle Scholar
  14. 14.
    F. Ebrahimi, M.R. Barati, J. Vib. Control (2016) DOI:10.1177/1077546316646239
  15. 15.
    F. Ebrahimi, M.R. Barati, Int. J. Eng. Sci. 107, 183 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Ebrahimi, M.R. Barati, Mech. Adv. Mater. Struct. (2016) DOI:10.1080/15376494.2016.1196795
  17. 17.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 792 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 843 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    F. Ebrahimi, M.R. Barati, Arab. J. Sci. Eng. (2016) DOI:10.1007/s13369-016-2266-4
  20. 20.
    F. Ebrahimi, M.R. Barati, J. Braz. Soc. Mech. Sci. Eng. (2016) DOI:10.1007/s40430-016-0646-z
  21. 21.
    F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 1 (2016)Google Scholar
  22. 22.
    F. Ebrahimi, E. Salari, Mech. Adv. Mater. Struct. 23, 1379 (2016)CrossRefGoogle Scholar
  23. 23.
    F. Ebrahimi, E. Salari, Acta Astron. 113, 29 (2015)CrossRefGoogle Scholar
  24. 24.
    S.C. Pradhan, J.K. Phadikar, J.K., J. Sound Vib. 325, 206 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    F. Ebrahimi, G.R. Shaghaghi, M. Boreiry, Int. J. Struct. Stab. Dyn. 16, 1550023 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    F. Ebrahimi, M. Boreiry, Appl. Phys. A 121, 1305 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    F. Ebrahimi, G.R. Shaghaghi, M. Boreiry, Struct. Eng. Mech. 57, 179 (2016)CrossRefGoogle Scholar
  28. 28.
    Zhi Yan, Liying Jiang, J. Phys. D: Appl. Phys. 45, 255401 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    P. Lu, L. H. He, H.P. Lee, C. Lu, Int. J. Solids Struct. 43, 4631 (2006)CrossRefGoogle Scholar
  30. 30.
    N. Yamaki, Z. Angew. Math. Mech. 41, 501 (1961)MathSciNetCrossRefGoogle Scholar
  31. 31.
    L.E. Shen, H.S. Shen, C.L. Zhang, Comput. Mat. Sci. 48, 680 (2010)CrossRefGoogle Scholar
  32. 32.
    P. Malekzadeh, Thin-Walled Struct. 46, 11 (2008)CrossRefGoogle Scholar
  33. 33.
    E. Jomehzadeh, A.R. Saidi, Int. J. Mech. Aerospace, Industr. Mechatron. Manufact. Eng. 5, 994 (2011)Google Scholar
  34. 34.
    A.R. Setoodeh, P. Malekzadeh, A.R. Vosoughi, Proc. Inst. Mech. Eng. C 226, 1896 (2011)CrossRefGoogle Scholar
  35. 35.
    L.E. Shen, H.S. Shen, C.L. Zhang, Comput. Mat. Sci. 48, 680 (2010)CrossRefGoogle Scholar
  36. 36.
    K. Kiani, J. Nonlinear Dyn. 76, 1885 (2014)CrossRefGoogle Scholar
  37. 37.
    A.G. Arani, R. Kolahchi, A.M. Barzoki, M.R. Mozdianfard, S.M. Noudeh Farahani, J. Mech. Eng. Sci. 227, 862 (2012)CrossRefGoogle Scholar
  38. 38.
    A.G. Arani, M.J. Maboudi, R. Kolahchi, Eur. J. Mech. A/Solids 45, 185 (2014)MathSciNetCrossRefGoogle Scholar
  39. 39.
    F. Ebrahimi, S.H.S. Hosseini, J. Therm. Stresses 39, 606 (2016)CrossRefGoogle Scholar
  40. 40.
    F. Ebrahimi, S.H.S. Hosseini, Appl. Phys. A 122, 922 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    F. Ebrahimi, S.H.S. Hosseini, Eur. Phys. J. Plus 131, 160 (2016)CrossRefGoogle Scholar
  42. 42.
    Y. Wang, F. Li, X. Jing, Y. Wang, Phys. Lett. A 379, 1532 (2015)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Y. Wang, F.M. Li, Y.Z. Wang, Choas 25, 063108 (2015)CrossRefGoogle Scholar
  44. 44.
    Y. Wang, F.M. Li, Y.Z. Wang, Nonlinear Dyn. 85, 1719 (2016)CrossRefGoogle Scholar
  45. 45.
    Y. Wang, F.M. Li, Y.Z. Wang, Physica E 67, 65 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    K.F. Wang, B.L. Wang, J. Appl. Phys. 112, 013520 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)CrossRefGoogle Scholar
  48. 48.
    H.S. Park, Z. Suo, J. Zhou, P.A. Klein, Int. J. Solids Struct. 49, 2187 (2012)CrossRefGoogle Scholar
  49. 49.
    S.C. Pradhan, J.K. Phadikar, J. Sound Vib. 325, 206 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    H.N. Chu, G. Herrman, J. Appl. Mech. 23, 532 (1956)MathSciNetGoogle Scholar
  51. 51.
    T. Wah, Int. J. Mech. Sci. 5, 425 (1963)CrossRefGoogle Scholar
  52. 52.
    C. Mei, K. Decha-umphai, AIAA J. 23, 1104 (1985)ADSCrossRefGoogle Scholar
  53. 53.
    C.Y. Chia, M.K. Prabhakara, J. Appl. Mech. 45, 623 (1978)ADSCrossRefGoogle Scholar
  54. 54.
    T. Manoj, M. Ayyappan, K.S. Krishnan, B. Nageswara Rao, Z. Z. Angew. Math. Mech. 80, 183 (2000)CrossRefGoogle Scholar
  55. 55.
    A.H. Nayfeh, Nonlinear Oscillations (John Wiley & Sons, Inc., 1995)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations