Effects of chemical reaction and partial slip on the three-dimensional flow of a nanofluid impinging on an exponentially stretching surface

  • B. Mahanthesh
  • F. Mabood
  • B. J. Gireesha
  • R. S. R. Gorla
Regular Article


The three-dimensional mixed convection boundary layer flow of a nanofluid induced by an exponentially stretching sheet is numerically investigated in the presence of thermal radiation, heat source/sink and first-order chemical reaction effects. The adopted nanofluid model incorporates the effects of Brownian motion and thermophoresis into the mathematical model. The first-order velocity slip boundary conditions are also taken into account. The governing boundary layer equations are transformed into a set of nonlinear ordinary differential equations by employing suitable similarity variables. The resultant equations are solved numerically using the Runge-Kutta-Fehlberg method. Obtained solutions are compared with previous results in a limiting sense from the literature, demonstrating an excellent agreement. To show the typical trend of the solutions, a parametric study is conducted. The axial velocity, transverse velocity, temperature and nanoparticle volume fraction profiles as well as the skin-friction coefficient, Nusselt and Sherwood numbers are demonstrated graphically as a representative set of numerical results and discussed comprehensively.


  1. 1.
    B.C. Sakiadis, AIChE J. 7, 26 (1961)CrossRefGoogle Scholar
  2. 2.
    L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970)CrossRefGoogle Scholar
  3. 3.
    W.A. Khan, I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010)CrossRefGoogle Scholar
  4. 4.
    M.M. Rashidi, A.J. Chamkha, M. Keimanesh, Am. J. Comput. Math. 1, 119 (2011)CrossRefGoogle Scholar
  5. 5.
    F. Mabood, W.A. Khan, A.I.M. Ismail, J. Taiwan Inst. Chem. Eng. 54, 11 (2015)CrossRefGoogle Scholar
  6. 6.
    B.J. Gireesha, B. Mahanthesh, R.S.R. Gorla, J. Nanofluids 3, 267 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Hayat, S.A. Shehzad, A. Rafique, M.Y. Malik, Int. J. Numer. Methods Fluids 68, 483 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    M. Mustafa, T. Hayat, S. Obaidat, Int. J. Numer. Methods Heat Fluid Flow 23, 945 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Nadeem, C. Lee, Nanoscale Res. Lett. 7, 94 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    F. Mabood, W.A. Khan, A.I.M. Ismail, J. Magn. & Magn. Mater. 374, 569 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    M.M. Rashidi, N.V. Ganesh, A.K. Abdul Hakeem, B. Ganga, J. Mol. Liq. 198, 234 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, J. Niger. Math. Soc. 35, 178 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Sheikholeslami, D.D. Ganji, Powder Technol. 253, 789 (2014)CrossRefGoogle Scholar
  14. 14.
    I.C. Liu, H.H. Wang, Y.F. Peng, Chem. Eng. Comm. 200, 253 (2013)CrossRefGoogle Scholar
  15. 15.
    B.J. Gireesha, R.S.R. Gorla, B. Mahanthesh, J. Nanofluids 4, 474 (2015)CrossRefGoogle Scholar
  16. 16.
    T. Hayat, S.A. Shehzad, A. Alsaedi, M.S. Alhothuali, Appl. Math. Mech. 34, 489 (2013)CrossRefGoogle Scholar
  17. 17.
    T. Hayat, S.A. Shehzad, M. Qasim, S. Asghar, Int. J. Numer. Methods Heat Fluid Flow 24, 342 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Hayat, B. Ashraf, S.A. Shehzad, E. Abouelmagd, Int. J. Numer. Methods Heat Fluid Flow 25, 593 (2015)CrossRefGoogle Scholar
  19. 19.
    S.A. Shehzad, T. Hayat, M. Qasim, S. Asghar, Braz. J. Chem. Eng. 30, 187 (2013)CrossRefGoogle Scholar
  20. 20.
    F. Mabood, W.A. Khan, A.I.M. Ismail, Chem. Eng. J. 273, 430 (2015)CrossRefGoogle Scholar
  21. 21.
    F. Mabood, W.A. Khan, A.I.M. Ismail, Can. J. Phys. 94, 26 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    F. Mabood, S. Shateyi, M.M. Rashidi, E. Momoniat, N. Freidoonimehr, Adv. Powder Technol 27, 742 (2016)CrossRefGoogle Scholar
  23. 23.
    S.S. Motsa, S. Shateyi, J. Appl. Math. 2012, 689015 (2012)Google Scholar
  24. 24.
    S. Mukhopadhyay, K. Bhattacharyya, J. Egypt. Math. Soc. 20, 229 (2012)CrossRefGoogle Scholar
  25. 25.
    M.M. Rashidi, E. Momoniat, M. Ferdows, A.B. Parsa, Math. Probl. Eng. 2014, 239082 (2014)CrossRefGoogle Scholar
  26. 26.
    T. Hayat, T. Muhammad, S.A. Shehzad, A. Alsaedi, Int. J. Numer. Methods Heat Fluid Flow 25, 762 (2015)CrossRefGoogle Scholar
  27. 27.
    B.J. Gireesha, B. Mahanthesh, ISRN Thermodyn. 2013, 935481 (2013)CrossRefGoogle Scholar
  28. 28.
    B.J. Gireesha, B. Mahanthesh, M.M. Rashidi, Int. J. Ind. Math. 7, 6 (2015)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • B. Mahanthesh
    • 1
    • 2
  • F. Mabood
    • 3
  • B. J. Gireesha
    • 2
  • R. S. R. Gorla
    • 4
  1. 1.Department of MathematicsChrist UniversityKarnatakaIndia
  2. 2.Department of Studies and Research in MathematicsKuvempu UniversityKarnatakaIndia
  3. 3.Department of MathematicsUniversity of PeshawarPeshawarPakistan
  4. 4.Department of Mechanical and Civil engineeringPurdue UniversityWestvilleUSA

Personalised recommendations