Numerical investigation of the enhancement factor of Raman scattering using plasmonic properties of gold nanorhomb arrays

Regular Article

Abstract.

Plasmonic nanostructures with sharp tips like nanorhomb array provide strong electric field enhancement and consequently meaningful Raman signal enhancement. In this study, the near-field electromagnetic enhancement of the gold nanorhomb array formed by a new proposed approach has been investigated using the finite element method (FEM). Feasibility and ease of fabrication, which are very important in practical applications, are intended in this approach. This nanorhomb array is achieved by arranging holes tangentially together in a square lattice. In other words, nanorhombs are formed by transition from nanohole to nanoparticle array. Optimization of this structure for a surface-enhanced Raman spectroscopy (SERS) substrate is performed by sweeping through the geometric parameters. The most privileged nanorhomb array substrate with highest hot spot density and EM field enhancement is obtained by calculating the enhancement factor (EF) and normalized EF (EFN) for Raman lines of pyridine. Our simulations indicate that the localized surface plasmon resonance (LSPR) mode of such nanorhomb array leads to high electromagnetic enhancement factor (EMEF) and average surface integral of field enhancement factor (\(\overline{\rm EF}\)), which are hundreds of times greater than the nanohole arrays. It is found that this LSPR mode is thickness-dependent besides being periodicity-dependent. Finally, accurate EF is calculated by considering local incident field enhancement in terms of the excitation process and local density of states (LDOS) enhancements on emission process and then the best structure with highest EF is obtained.

References

  1. 1.
    Y.H. Ong, M. Lim, Q. Liu, Opt. Express 20, 22158 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    F.S. Parker, Appl. Spectrosc. 29, 129 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    G.B. Jung et al., Biomed. Opt. Express 4, 2673 (2013)CrossRefGoogle Scholar
  4. 4.
    G.B. Jung et al., Biomed. Opt. Express 5, 3508 (2014)CrossRefGoogle Scholar
  5. 5.
    C.G. Atkins, Raman spectroscopy of stored red blood cells: evaluating clinically relevant biochemical markers in donated blood, in European Conference on Biomedical Optics (Optical Society of America, 2015)Google Scholar
  6. 6.
    G.B. Jung et al., Biomed. Opt. Express 5, 3238 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Fernand et al., Eur. Phys. J. ST 224, 2001 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Zhou et al., Eur. Phy. J. Appl. Phys. 65, 30701 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    F. Castillo, E. De la Rosa, E. Perez, Eur. Phys. J. D 63, 301 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S. Kazim et al., Eur. Phys. J. Appl. Phys. 55, 23905 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    C. Pettenkofer, I. Pockrand, A. Otto, J. Phys. Colloq. 44, C10-463 (1983)Google Scholar
  12. 12.
    R. Shugayev, Opt. Express 18, 24946 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J.M. McMahon et al., Anal. Bioanal. Chem. 394, 1819 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Zhu, F.-K. Li, Eur. Phys. J. B 80, 83 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    P.G. Etchegoin, E.C. Le Ru, Basic electromagnetic theory of SERS, in Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications (Wiley-VCH Verlag Gmbh & Co., 2010) pp. 1--38Google Scholar
  16. 16.
    E. Le Ru et al., J. Raman Spectrosc. 39, 1127 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    J. Sanchez-Gil, J. Garcia-Ramos, E. Mendez, Opt. Express 10, 879 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Wang et al., Nano Res. 6, 159 (2013)CrossRefGoogle Scholar
  19. 19.
    D. Cialla et al., Anal. Bioanal. Chem. 394, 1811 (2009)CrossRefGoogle Scholar
  20. 20.
    Y. Deng et al., Eur. Phys. J. D 69, 37 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    T. Lopez-Rios, Surface-enhanced Raman scattering: some unexplained effects, in Annales de Physique (Les Editions de Physique, 1987)Google Scholar
  22. 22.
    J. Ziegler, Plasmonic nanostars as efficient broadband scatterers for random lasing, in European Quantum Electronics Conference (Optical Society of America, 2015)Google Scholar
  23. 23.
    W. Niu et al., J. Am. Chem. Soc. 137, 10460 (2015)CrossRefGoogle Scholar
  24. 24.
    C.G. Khoury, T. Vo-Dinh, J. Phys. Chem. C 112, 18849 (2008)CrossRefGoogle Scholar
  25. 25.
    F.-C. Chien et al., Opt. Express 17, 13974 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    W.-C. Lin et al., Plasmonics 4, 187 (2009)CrossRefGoogle Scholar
  27. 27.
    F. Zhou, Y. Liu, W. Cai, Opt. lett. 39, 1302 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    C.-H. Zhang et al., Eur. Phys. J. Appl. Phys. 73, 10501 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    F. Peyskens et al., ACS Photon. 2016, 102 (2015)Google Scholar
  30. 30.
    B.-K. Chao et al., J. Opt. 17, 125002 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    M.R. Gonçalves, F. Enderle, O. Marti, J. Nanotechnol. 2012, 173273 (2012)CrossRefGoogle Scholar
  32. 32.
    A.B. Zrimsek, A.-I. Henry, R.P. Van Duyne, J. Phys. Chem. Lett. 4, 3206 (2013)CrossRefGoogle Scholar
  33. 33.
    C. Zhang et al., Opt. Express 23, 24811 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    M. Jin, High density periodic metal nanopyramids for surface enhanced raman spectroscopy, University of Twente (2012)Google Scholar
  35. 35.
    D. Cialla, R. Möller, J. Popp, Application of surface enhanced Raman spectroscopy for (bio) analytical devicesGoogle Scholar
  36. 36.
    J. Petschulat et al., Opt. Express 18, 4184 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    C.L. Haynes et al., J. Phys. Chem. B 107, 7337 (2003)CrossRefGoogle Scholar
  38. 38.
    E.D. Palik, Handbook of Optical Constants of Solids, Vol. 3 (Academic Press, 1998)Google Scholar
  39. 39.
    A. Degiron, T. Ebbesen, J. Opt. A 7, S90 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    K. Cheng et al., Appl. Phys. Lett. 100, 253101 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    P.B. Catrysse, S. Fan, J. Nanophoton. 2, 021790 (2008)CrossRefGoogle Scholar
  42. 42.
    P. Jaina, C. Deebb, Near-Fields in Assembled Plasmonic Nanostructures, in Handbook of Molecular Plasmonics (2013) p. 261Google Scholar
  43. 43.
    M. Nishida, N. Hatakenaka, Y. Kadoya, arXiv:1502.05549 (2015)
  44. 44.
    C.-Y. Tsai et al., Nano Lett. 12, 1648 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Peng et al., Appl. Phys. Lett. 96, 133104 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    F. Wang, Y.R. Shen, Phys. Rev. Lett. 97, 206806 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    J.-F. Bryche et al., J. Mater. Sci. 50, 6601 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    E. Le Ru, P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and Related Plasmonic Effects (Elsevier, 2008)Google Scholar
  49. 49.
    R. Aroca, Surface-Enhanced Vibrational Spectroscopy (John Wiley & Sons, 2006)Google Scholar
  50. 50.
    Y.-L. Xu, Appl. Opt. 34, 4573 (1995)ADSCrossRefGoogle Scholar
  51. 51.
    P. Liao, A. Wokaun, J. Chem. Phys. 76, 751 (1982)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Huang et al., Sci. Rep. 6, 23159 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    Y. Huang et al., Phys. Chem. Chem. Phys. 17, 29293 (2015)CrossRefGoogle Scholar
  54. 54.
    P. Zheng et al., Phys. Chem. Chem. Phys. 17, 21211 (2015)CrossRefGoogle Scholar
  55. 55.
    J. Zuloaga, P. Nordlander, Nano Lett. 11, 1280 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    F. Moreno, P. Albella, M. Nieto-Vesperinas, Langmuir 29, 6715 (2013)CrossRefGoogle Scholar
  57. 57.
    P. Alonso-González et al., Phys. Rev. lett. 110, 203902 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    N. Hooshmand, J.A. Bordley, M.A. El-Sayed, J. Phys. Chem. C 119, 15579 (2015)CrossRefGoogle Scholar
  59. 59.
    J. Prikulis et al., Nano Lett. 4, 1003 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    S.M. Asiala, Z.D. Schultz, Analyst 136, 4472 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    W. Barnes, J. Mod. Opt. 45, 661 (1998)ADSCrossRefGoogle Scholar
  62. 62.
    S. Gaponenko, Phys. Rev. B 65, 140303 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    K. Inoue et al., Phys. Rev. A 78, 011805 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    S. Guddala et al., J. Appl. Phys. 112, 084303 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    S. Gaponenko, D. Guzatov, Chem. Phys. Lett. 477, 411 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    G. D'Aguanno et al., Phys. Rev. E 69, 057601 (2004)ADSCrossRefGoogle Scholar
  67. 67.
    E. Le Ru, P. Etchegoin, arXiv:physics/0509154 (2005)
  68. 68.
    M.H. Chowdhury, The use of aluminum nanostructures as platforms for metal enhanced fluorescence of the intrinsic emission of biomolecules in the ultra-violet, in BiOS (International Society for Optics and Photonics, 2010)Google Scholar
  69. 69.
    R.G. Brown, Classical Electrodynamics-Part II (Duke University Physics Department, 2007)Google Scholar
  70. 70.
    J. Jackson, Classical Electrodynamics (Wiley, New York, 1975) and B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986)Google Scholar
  71. 71.
    S.V. Gaponenko, Introduction to Nanophotonics (Cambridge University Press, 2010)Google Scholar
  72. 72.
    V. Klimov, D. Guzatov, Phys. Rev. B 75, 024303 (2007)ADSCrossRefGoogle Scholar
  73. 73.
    V. Zuev et al., J. Chem. Phys. 122, 214726 (2005)ADSCrossRefGoogle Scholar
  74. 74.
    S.H. Shams Mousavi et al., Acs Photon. 2, 1546 (2015)CrossRefGoogle Scholar
  75. 75.
    D. Guzatov, V. Klimov, Chem. Phys. Lett. 412, 341 (2005)ADSCrossRefGoogle Scholar
  76. 76.
    P. Bharadwaj, L. Novotny, Opt. Express 15, 14266 (2007)ADSCrossRefGoogle Scholar
  77. 77.
    R. Regmi et al., Sci. Rep. 5, 15852 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran

Personalised recommendations