A novel passivation process of silicon nanowires by a low-cost PECVD technique for deposition of hydrogenated silicon nitride using SiH4 and N2 as precursor gases


In this work, a different SiNx passivation process of silicon nanowires has been opted for the deposition of a hydrogenated silicon nitride (SiNx:H) by a low-cost plasma enhanced chemical vapor deposition (PECVD) using silane ( SiH4 and nitrogen ( N2 as reactive gases. This study is focused on the effect of the gas flow ratio on chemical composition, morphological, optical and optoelectronic properties of silicon nanowires. The existence of Si-N and Si-H bonds was proven by the Fourier transmission infrared (FTIR) spectrum. Morphological structures were shown by scanning electron microscopy (SEM), and the roughness was investigated by atomic force microscopy (AFM). A low reflectivity less than 6% in the wavelength range 250-1200nm has been shown by UV-visible spectroscopy. Furthermore, the thickness and the refractive index of the passivation layer is determined by ellipsometry measurements. As a result, an improvement in minority carrier lifetime has been obtained by reducing surface recombination of silicon nanowires.

This is a preview of subscription content, log in to check access.


  1. 1

    K-Q. Peng, S-T. Lee, Adv. Mater. 23, 198 (2011)

    Article  Google Scholar 

  2. 2

    K. Kang, H.S. Lee, D.W. Han, G.S. Kim, D. Lee, G. Lee, Y.M. Kang, M.H. Jo, Appl. Phys. Lett. 96, 3 (2010)

    Google Scholar 

  3. 3

    I. Peng, C.M. Strohsahl, K.E. Leach, T.D. Krauss, B.L. Miller, ACS Nano 3, 2265 (2009)

    Article  Google Scholar 

  4. 4

    K.Q. Peng, X. Wang, S.T. Lee, Appl. Phys. Lett. 95, 243112 (2009)

    ADS  Article  Google Scholar 

  5. 5

    A.I. Hochbaum, D. Gargas, Y.J. Hwang, P.D. Yang, Nano Lett. 9, 3550 (2009)

    ADS  Article  Google Scholar 

  6. 6

    Y.Q. Qu, L. Liao, Y.J. Li, H. Zhang, Y. Huang, X.F. Duan, Nano Lett. 9, 4539 (2009)

    ADS  Article  Google Scholar 

  7. 7

    A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P.D. Yang, Nature 451, 163 (2008)

    ADS  Article  Google Scholar 

  8. 8

    Y.Q. Qu, L. Liao, R. Cheng, Y. Wang, Y.C. Lin, Y. Huang, X.F. Duan, Nano Lett. 10, 1941 (2010)

    ADS  Article  Google Scholar 

  9. 9

    Sanjay K. Srivastava, Dinesh Kumar, P.K. Singh, M. Kar, Vikram Kumar, M. Husain, Nano Lett. 94, 1506 (2010)

    Google Scholar 

  10. 10

    J. Westwater, D.P. Gosain, S. Usui, Jpn. J. Appl. Phys. 36, 6204 (1997)

    ADS  Article  Google Scholar 

  11. 11

    Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Appl. Phys. Lett. 78, 2214 (2001)

    ADS  Article  Google Scholar 

  12. 12

    L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Gosele, T.Y. Tan, Appl. Phys. Lett. 84, 4968 (2004)

    ADS  Article  Google Scholar 

  13. 13

    J.R. Maiolo, B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, H.A. Atwater, N.S. Lewis, J. Am. Chem. Soc. 129, 12346 (2007)

    Article  Google Scholar 

  14. 14

    A.M. Morales, C.M. Lieber, Science 279, 208 (1998)

    ADS  Article  Google Scholar 

  15. 15

    Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, S.T. Lee, Appl. Phys. Lett. 72, 1835 (1998)

    ADS  Article  Google Scholar 

  16. 16

    Ming-Liang Zhang, Kui-Qing Peng, Xia Fan, Jian-Sheng Jie, Rui-Qin Zhang, Shuit-Tong Lee, Ning-Bew Wong, J. Phys. Chem. C 112, 4444 (2008)

    Article  Google Scholar 

  17. 17

    M. Karyaoui, A. Bardaoui, M. Ben Rabha, J.C. Harmand, M. Amlouk, Eur. Phys. J. Appl. Phys. 58, 20103 (2012)

    ADS  Article  Google Scholar 

  18. 18

    Wei-Cheng Wang, Che-Wei Lin, Hsin-Jui Chen, Che-Wei Chang, Jhih-Jie Huang, Ming-Jui Yang, Budi Tjahjono, Jian-Jia Huang, Wen-Ching Hsu, Miin-Jang Chen, ACS Appl. Mater. Interfaces 5, 9752 (2013)

    Article  Google Scholar 

  19. 19

    E.S.M. Ashour, M.Y. Sulaiman, N. Amin, Z. Ibrahim, J. Phys.: Conf. Ser. 431, 012021 (2013)

    Google Scholar 

  20. 20

    Wim Soppe, Henk Rieffe, Arthur Weeber, Prog. Photovolt.: Res. Appl. 13, 551 (2005)

    Article  Google Scholar 

  21. 21

    S.C. Mao, S.H. Tao, Y.L. Xu, X.W. Sun, M.B. Yu, G.Q. Lo, D.L. Kwong, Opt. Express 16, 20809 (2008)

    ADS  Article  Google Scholar 

  22. 22

    I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    ADS  Article  Google Scholar 

  23. 23

    R.A. Sinton, A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996)

    ADS  Article  Google Scholar 

  24. 24

    Hai Zhou, Guojia Fang, Longyan Yuan, Chong Wang, Xiaoxia Yang, Huihui Huang, Conghua Zhou, Xingzhong Zhao, Appl. Phys. Lett. 94, 013503 (2009)

    ADS  Article  Google Scholar 

  25. 25

    F. Duerinckx, J. Szlufcik, Sol. Energy Mater. Sol. Cells 72, 231 (2002)

    Article  Google Scholar 

  26. 26

    A. Cuevas, D. Macdonal, Sol. Energy 76, 255 (2004)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Lamia Bouaziz .

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouaziz , L., Dridi, D., Karyaoui, M. et al. A novel passivation process of silicon nanowires by a low-cost PECVD technique for deposition of hydrogenated silicon nitride using SiH4 and N2 as precursor gases. Eur. Phys. J. Plus 132, 119 (2017). https://doi.org/10.1140/epjp/i2017-11383-2

Download citation